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ABSTRACT
Emergent states are behavioral, cognitive and affective processes ap-
pearing among the members of a group when they interact together.
In the last decade, the development of computational approaches
received a growing interest in building Human-Centered systems.
Such a development is particularly difficult because some of these
states have several dimensions interplaying somehow and some-
where over time. In this paper, we focus on cohesion, its dimensions
and their interplay. Several definitions of cohesion exist, it can be
simply defined as the tendency of a group to stick together to pursue
goals and/or affective needs. This plethora of definitions resulted in
many different cohesion dimensions. Social and Task dimensions
are the most investigated both in Social Sciences and Computer
Science since they both play an important role in a wide range of
contexts and groups. To the best of our knowledge, however, no pre-
vious work on the prediction of cohesion dynamics focused on how
these 2 dimensions interplay. We leverage Social Sciences to address
this issue. In particular, we take advantage of the importance of
Social cohesion for creating flexible and constructive relationships
to reinforce Task cohesion. We describe a Deep Neural Network
architecture (DNN) for predicting the dynamics of Task cohesion
by applying transfer learning from a pre-trained model dedicated
to the prediction of Social cohesion dynamics. Our architecture
is evaluated against several baselines. Results show that it signif-
icantly improves the predictions of the Task cohesion dynamics,
confirming the benefits of integrating Social Sciences insights into
models architectures.

CCS CONCEPTS
• Human-centered computing → Collaborative and social com-
puting; • Computing methodologies→ Artificial intelligence.
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1 INTRODUCTION
“The whole is greater than the sum of its parts” [2]. This statement
by Aristotle, a philosopher in Ancient Greece, is usually employed
in Social Sciences to address emergent phenomena in groups such
as cohesion, transactive memory system and so on, also called
emergent states. They are dynamic constructs that characterize
properties of the group and that result from the interactions among
group members (e.g., [26, 34]). Addressing emergent states com-
putationally is an open challenge of Human-Centered Computing
(HCC), a research field aimed at developing computational methods
to support and assist human endeavours by studying human inter-
actions through multiple facets [10]. This task is made particularly
difficult by the multidimensionality of some of these states because
dimensions interplay somehow and somewhere over time. This
paper focuses on cohesion, its dimensions and their interplay. This
emergent state is one of the most commonly studied in Social Sci-
ences [41] and, more recently, also in Computer Science (e.g., [33]).
Scholars in Social Sciences provided multiple definitions of cohe-
sion, identifying several dimensions (generally from 2 to 5, see for
example [3, 7, 12, 30]). Despite the scholars’ disarray on the number
and the nature of these dimensions, the Social and Task dimensions
are usually retained in most definitions. Both dimensions, indeed,
play a role in a wide range of situations (e.g., a group of friends,
a classroom, an emergency team and so on), and are especially
relevant for studying task-driven groups (i.e., groups that gather
for a purpose). The Social dimension refers to the interpersonal
bonds that exist between group members, while the Task dimen-
sion corresponds to the group members’ shared commitment to the
task [43]. According to theoretical models, these dimensions are not
orthogonal, meaning that they may all influence each other over
time (e.g., [7, 43]). For example, the development of social bonds
and friendships within the group (related to the Social dimension)
may positively impact Task cohesion. Building on these theoretical
models, computational studies naturally started to investigate and
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develop methods for the automated analysis of Social and Task
cohesion. To date, the focus of computer scientists, indeed, has
been either on predicting the intensity level (as Low or High) of
cohesion without distinguishing among dimensions (e.g., [22]) or
on implementing models predicting the presence and the intensity
level of a specific dimension (e.g., [37]). To the best of our knowl-
edge, there is, however, no work on the automatic prediction of
cohesion that integrates the interplay between its Social and Task
dimensions over time.

In this paper, we take a first step towards bridging this gap by
grounding on Social Sciences insights. More specifically, we ex-
ploit the role played by the Social dimension for creating flexible
and constructive relationships leading to the reinforcement of Task
cohesion (e.g. [43], [47]). Concretely, we present a Deep Neural
Network (DNN) architecture for predicting the dynamics of cohe-
sion by applying transfer learning. This is done to take advantage
of the information learnt by a model dedicated to the classifica-
tion of Social cohesion’s dynamics to predict the Task cohesion’s
dynamics [46]. Dynamics here refers to changes in cohesion (i.e.,
decrease or not-decrease). This architecture also takes into account
temporality by integrating, amongst others, LSTM layers and it
models cohesion at both individual and group levels. The DNN’s
performances are evaluated against baselines predicting one di-
mension at a time or predicting both dimensions using traditional
machine learning techniques such as multilabel classification.

2 BACKGROUND AND RELATEDWORK
2.1 Background
In the 40s, Lewin first defined cohesion as “a group characteris-
tic that depends on its size, organization and intimacy” [27]. This
definition grounds on the force field theory that views people’s
activity as affected by forces in their surroundings and environ-
ment [28]. Building upon this work, later, scholars provided several
definitions of cohesion (e.g., [3, 4, 12, 30]) and multidimensional
models of it, in which the number of dimensions varies from 2
to 5. For example, in [6], Carron and Brawley defined the Group
Integration and the Individual Attraction To Group dimensions to
take into account the contributions of both each group member
and the group as a whole. These 2 dimensions have Social and Task
as their sub-dimensions. According to Griffith, depending on the
presence (or absence) of hierarchical relationships among the group
members, cohesion can be also studied at the horizontal level (e.g.,
a group of friends) or at the vertical level (e.g., a teacher with her
students) [17]. He differentiated 2 dimensions: the Instrumental (or
Task) and the Affective (or Social) dimensions. Bollen and Hoyle
integrated other dimensions related to the sense of belonging and
the feeling of morale associated with membership in the group [5].
Social and Task dimensions always appear in all this plethora of
definitions. Furthermore, Salas et al. conducted a meta-analysis in
which they recommend giving priority to Social and Task cohesion
and integrating time when studying cohesion [42]. Recently, Severt
and Estrada proposed a framework of cohesion that gathers all of
these efforts to categorize the structural and functional properties
of cohesion [43]. This framework posits that cohesion serves an
Affective and an Instrumental function. The former refers to all the
aspects that highlight the emotional impact on a group member and,

by extension, the group as a whole (e.g., behaviors or elements of
interaction such as cooperation or exchange) and is structured into
the Interpersonal and the Group Pride dimensions. The instrumental
function corresponds to the aspects that highlight the goal- and
task-based activities of the group and is composed of the Social and
Task dimensions. Finally, for each dimension, we can distinguish 2
levels (i.e., horizontal and vertical). This distinction is particularly
important as, depending on the dimensions and the level at which
cohesion is investigated, it might emerge and evolve differently.

In this study, we follow Severt and Estrada’s framework by specif-
ically focusing on the interplay between the Social and Task dimen-
sions, at horizontal level. This level of investigation was chosen as it
aligns with the contemporary trends of flattening organizational hi-
erarchies and self-managed teams [31], improving the applicability
of our findings.

2.2 Related work
To date, computational studies about cohesion focus on analysing
its Social and Task dimensions since they are the easiest to grasp
and measure [42]. Hung and Gatica-Perez [22] studied the role
played by audio, visual and audio-visual features on the predic-
tion of cohesion intensity level (Low or High) by binary classifiers.
Their models addressed cohesion as a whole, that is without dis-
tinguishing between its dimensions. Nanninga and colleagues ex-
tended this work, integrating pairwise and group features related
to the alignment of para-linguistic speech behavior and address-
ing Social and Task dimensions separately [37]. They found that
their audio features such as synchrony and convergence are more
relevant to predict the Social dimension rather than the Task di-
mension. Both these studies show the importance of turn-taking
and mimicry features for the prediction of cohesion intensity level.
Despite cohesion being inherently temporal, these studies unitized
interaction in non-overlapped temporal units which feed models as
independent samples. This approach cannot catch dynamics that
according to [42] is a relevant point to understand cohesion. Later
on, researchers started to investigate Social and Task dimensions of
cohesion at a longitudinal level with the use of sociometric badges
(i.e., objects placed on a person or on its phone, that are able to track
a person’s movement and activity) [51]. These badges were used to
quantify dyadic interactions and face-to-face communications and
analyze small group collaborations during long-duration missions
in confined spaces. Recently, a growing interest in the interplay
between the several dimensions of cohesion emerged also in Com-
puter Science. To address this issue, a couple of studies developed
methods inspired by game theories. In [39], the authors investigated
the differences between the Social and Task dimensions using an
approach based on evolutionary game theory by promoting the
evolution of cooperation in group interactions. They reveal that
Social cohesion is detrimental to the evolution of cooperation while
Task cohesion facilitates it. They explain these results by exploring
the effects of the mistake rate on the cooperation of the groups and
show that increasing Task cohesion would preserve cooperation
from mistakes while increasing Social cohesion would augment
the mistake rate. Their model, however, uses randomly generated
data and does not consider the reciprocal effect of both dimensions.
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Walocha et al., proposed a method based on notions from coopera-
tive game theory (i.e., using SHAP values) to assess the importance
of motion capture-based features on a random forest model predict-
ing the dynamics of the Social and Task dimensions of cohesion.
Interplay is faced through a multilabel classification [49]. Their
model, however, addresses cohesion using a single modality only.

3 A SOCIAL SCIENCES INSPIRED MODEL FOR
INTEGRATING SOCIAL AND TASK
INTERPLAY

In this Section, we present the Transfer Between Dimensions (TBD)
architecture. This is a DNN architecture that: (1) integrates the
interplay between Social and Task dimensions of cohesion follow-
ing Social Sciences insights; (2) takes into account temporality by
integrating, amongst others, LSTM layers; and (3) models cohesion
at both individual and group levels. In the following, for each of
these items, we describe the Social Sciences insights we ground on
and how such knowledge is reflected in the architecture. Concern-
ing (1), Carron and Brawley question whether and which one of
the Social and Task dimensions is predominant over the other one.
They argue that Social cohesion might particularly impact Task
cohesion depending on many factors including the context of the
interaction, the type of group (e.g., work team) and the stage of for-
mation of the group (e.g., early-stage) [6]. In [47], the authors claim
that Social cohesion would likely be more salient in social groups
such as group of friends. Also, as suggested by Grossman et al. [19],
Social cohesion emerges first in the group before its members shift
attention to Task cohesion. Furthermore, Severt and Estrada [43]
state that Social cohesion may create flexible and constructive rela-
tionships and would by extension, reinforce Task cohesion. Hence,
Social cohesion is expected to be more salient and to be a driver
for Task cohesion [19, 47]. For these reasons, we decided to imple-
ment TBD, a transfer learning approach to predict the dynamics
of Task cohesion based on a pre-trained model dedicated to the
prediction of Social cohesion’s dynamics. In that way, the model
takes advantage of the Social representation of cohesion previously
learnt to optimize Task cohesion prediction. About (2), as cohe-
sion is an emergent state, it is by definition a temporal construct
changing over time [18]. This implies that the relationship between
the 2 dimensions develops over time. TBD takes into account the
temporality into its architecture and also predicts the dynamics of
cohesion at multiple points in time. Finally, concerning (3), since
cohesion is a group-level phenomenon our architecture needs to
model both individual and group behaviours simultaneously. Ac-
cording to Cattell [8], groups can be studied at 3 different levels:
individual, structural (interactions within the group) and syntality
(group as a whole), highlighting the need to consider individual and
group contributions. In TBD, this is done both at the feature level
(with a distinction between individual and group features) and at
the architectural level (with an individual component and a group
component, that are aimed at learning the temporal dynamics of
cohesion at individual and group levels, respectively). In the follow-
ing, we describe a TBD instance working on a data set explicitly
conceived to study cohesion over time and its dimensions.

3.1 Data set
Several data sets of social interactions in groups exist (e.g., Panop-
tic [23], MUMBAI [13], AMI [35]). These data sets were either
collected to study social interactions in a specific context (e.g.,
meeting, board game) or to improve group detection or tracking
algorithms. Some of these data sets also offer assessments of spe-
cific phenomena such as emotion and leadership provided by the
participants or by pools of external observers. These assessments,
however, are generally made over time windows defined according
to technical constraints or Social Sciences theories, and without a
particular focus on the development of the measured phenomenon
over time. In this study, we adopt the GAME-ON data set [32]. To
the best of our knowledge, this is the only publicly available data
set specifically designed for the study of Social and Task cohesion
and it provides repeated self-assessments of it over time for each
member of the group. A slightly modified version of the Group
Environment Questionnaire (GEQ) [7], indeed, was administered
between each pair of tasks. GEQ is a well-established question-
naire already used by several studies to measure the Social and
Task dimensions separately. Moreover, this data set was conceived
following the theoretical findings of scholars in Social Sciences
such as [47] and [43]. GAME-ON is a multimodal data set (audio,
video, and motion capture recordings) in which small groups of
3 friends interact in the context of an escape game. The data set
includes more than 11 hours of interaction involving 15 groups. The
average duration of a session is 35min and 30s (SD = 4min 10s). The
escape game scenario is structured in 5 tasks, explicitly designed to
elicit changes in the Social and Task dimensions of cohesion (i.e.,
increase or decrease of cohesion with respect to the previous task).
The first task lasts about 10 minutes, while the second task lasts
about 9 minutes. The third and fourth tasks take 7 minutes and the
fifth task 8 minutes. Table 1 describes the expected variations of
cohesion between 2 consecutive tasks (T) for both the Social and
Task dimensions. In [32], authors showed that, except for the T1-T2
and T2-T3 transitions of the Task dimension, the expected changes
in cohesion were confirmed by participants’ answers.

3.2 Individual and group features
We developed and extracted a set of 84 motion capture-based and
audio nonverbal features characterizing social interaction. For the
sake of brevity and narrative clarity, the details of implementation
are not given. Features computed from motion capture data con-
cern proxemics (i.e., the way people use the space) and kinesics (i.e.,

Table 1: Expected changes in cohesion between 2 consecu-
tive tasks (T) for the Social and Task dimensions as reported
in [32]. Start means the beginning of the recordings.

Change in cohesion
Transition Social Task
Start - T1 Decrease (↘) ↘
T1 - T2 ↘ Increase (↗)
T2 - T3 ↗ ↘
T3 - T4 ↗ ↗
T4 - T5 ↗ ↗
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Table 2: List of the motion capture-based and audio nonverbal features characterizing social interaction used in this study.
The features with a “★” are the ones for which we applied statistical functions (i.e., mean, std, min, max and skewness).

Individual Group

Motion Capture

Proxemics
Distance from individual to the barycentre of the group ★ Maximum distance between group members ★

Total distance traveled
Time in F-Formation

(triangle or semi circular)
Interpersonnal distances

(Public, Social and Personnal spaces)

Kinesics

Posture expansion ★ Amount of walking ★

Kinetic energy ★
Amount of hand gesture while not walking ★

Touch detection ★

Synchrony of kinetic energies

Audio

Turn-taking Laughter duration Average turn duration
Total speaking time

Time of overlapping speechGeMAPS

Pitch / Jitter / Loudness
Spectral slope / Harmonic differences
F1,F2,F3 frequency and relative energy

F1 bandwidth

bodymovement and gesture). Indeed, both play an important role in
nonverbal communication [21] and is relevant for predicting Social
and Task dynamics of cohesion [49]. Regarding the audio data, we
adopt features from the Geneva Minimalistic Acoustic Parameter
Set (GeMAPS; see [15] for a detailed description) that is composed
of features related to frequency, energy, spectral balance and tem-
poral features of the voice. These features have been successfully
used in many affect related prediction tasks such as predicting cohe-
sion or emotions (e.g., [40]). Furthermore, we included turn-taking
related features (e.g., average turn duration), taking inspiration
from previous work showing their relevance for the automated
detection of cohesion (e.g., [22]). Among all the features used in
this study, some are computed for each group member (e.g., the
total distance travelled) while others are computed at a group level
(e.g., the time of overlapping speech). Features were computed over
non-overlapped time windows of 20s according to previous work
on group interaction [16] and cohesion perception [9] exploiting
a thin slices approach. This refers to the process of making very
quick inferences about the individual and/or group phenomena
with a minimal amount of information [1]. Table 2 summarizes
the features we used. A “★” indicates that we applied statistical
functions (i.e., mean, std, min, max and skewness) instead of using
the computed value of the features. For sake of clarity, some of
the names chosen for describing the features concern an ensemble
of features related to the same behavior (e.g., posture expansion
regroups the latitudinal and longitudinal expansion features).

3.3 Labels
Based on the self-assessments of cohesion provided with the GAME-
ON data set, we build labels of Social and Task cohesion for each
pair of consecutive tasks. We defined a labeling strategy that for-
malizes the prediction of the dynamics of cohesion as a binary
classification problem (decrease vs not-decrease). In this work, we
explicitly focused on decreases in cohesion. This, indeed, is an es-
tablished method in research on Affective Computing and Social
Signal Processing (e.g., [36, 45]). Specifically, we rank the 6 scores

(a) Social cohesion (b) Task cohesion

Figure 1: Distribution of the labels (Decrease vs No De-
crease), for each task and for the Social and Task dimensions
of cohesion (see Figure 1(a) and Figure 1(b), respectively).

provided by the group members (i.e., 2 scores each) and then com-
pute their mean difference. Finally, we binarize the labels based
on their sign: a negative label indicates a decrease of cohesion,
resulting in assigning a value equal to 0 to the label; when a label
is positive, a value of 1 is given (i.e., no decrease of cohesion is
observed). Overall, this strategy led to an imbalanced distribution
of the labels for the Social dimension (i.e., 73% of “not-decrease"
labels) and a balanced distribution for the Task dimension (i.e., 56%
of “not-decrease" labels). As displayed by Figure 1, the distribution
per task is also highly imbalanced for both dimensions.

3.4 Overall architecture
The TBD architecture consists of 4 modules (see Figure 2). As men-
tioned above, this model was conceived to take advantage of a pre-
trained model dedicated to the classification of Social cohesion’s
dynamics to predict the Task cohesion’s dynamics, using transfer
learning. Hence, TBD only focuses on predicting the dynamics for
the Task dimension. The dynamics for the Social dimension are
predicted during the training phase of the pre-trained model.
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Figure 2: The architecture of the TBDmodel. It is composed of 4modules (i.e., Input, Social cohesion,Task cohesion andOutput).
Using multimodal features, the model integrates both individual and group contributions. The dynamics of Task cohesion are
predicted for each of the 5 tasks, using insights from Social cohesion learnt beforehand. The architecture is composed of fully
connected (FC), LSTM and Dropout layers.

3.4.1 Input. This module extracts the individual and group fea-
tures (see 3.2). In this study, featureswere computed on non-overlapped
time windows of 20s spanning the 2 last minutes of interaction for
each of the 5 tasks. This results in a total of 30 windows per group.
The choice to focus on the last 2 minutes was motivated by the
use of the self-assessments provided by the group members. As
reported in several studies carried out in very different contexts,
self-assessments collected through questionnaires are likely influ-
enced by the last recalled behavior (e.g., [14, 29]). Then, due to
the relatively small size of GAME-ON, the module performs data
augmentation to create synthetic groups by permuting the order of
the group members of the 15 groups. In this way, the size of the data
set is 6 times bigger than initially. Data augmentation also allows
us to prevent the model from learning undesirable patterns related
to the order in which the model is processing group members.

3.4.2 Social cohesion. This module consists of a pre-trained model
to predict Social cohesion. In that way, we use the higher repre-
sentation of the Social dimension learnt beforehand to start with
a better initialisation point. Moreover, as we are interested in the
interplay of Social and Task cohesion, the weights of the pre-trained
model are modified during the training phase of the TBD so that
it also integrates the impact of Task cohesion on Social cohesion.
One of the advantages of this pre-trained model is that it uses both
individual and group features to learn a higher common representa-
tion merging individual as well as group representations to predict
Social cohesion. Furthermore, its structure enables the integration
of the temporality between the time windows as it is composed of
LSTM layers both at individual and group levels. The pre-trained
model, also used in [33], consists of 2 components: the Individual
and the Group components. The former has 3 branches (1 per group
member), where each one of them is composed of a fully connected
(FC) layer with 50 units and a ReLu activation function, followed
by an LSTM layer with 50 units. To let the model learn a global rep-
resentation of an individual, each layer of the 3 individual branches
(i.e., the FC and LSTM layers) is shared following Equation 1:

Y𝑖 = 𝜙
©­«

𝑛∑
𝑗=1

(𝑊X𝑗 )
ª®¬ (1)

where 𝑌𝑖 is the output of layer 𝑖 (i.e., the FC and LSTM layers), 𝜙𝑖 ,
the activation function of the layer 𝑖 ,𝑊 , the matrix of parameters
common to every group members and 𝑋 𝑗 , the input related to
group member 𝑗 . As groups are composed of 3 persons, 𝑛 was
here set equal to 3. The Group component is aimed at learning the
temporal dynamics of cohesion at the group level. It takes multiple
inputs by concatenating the group features with the outputs of
the 3 individual LSTM layers from the Individual component. The
Group component is made of a first FC layer with 64 units and a
ReLu activation function, followed by an LSTM layer with 32 units
to integrate the group temporality. Next, a Dropout layer with a
rate of 0.2 is used to prevent the model from overfitting. This layer
is followed by another FC layer with 16 units and a ReLu activation
function.

3.4.3 Task cohesion. The output of the Social cohesion module is
used as input of an FC layer with 16 units and a ReLu activation
function. In that way, the model learns a higher representation of
Task cohesion before splitting into 5 branches (1 for each task) so
that each branch learns the task specificity. Branches are composed
of 2 FC layers with 8 and 4 units, respectively and a ReLu activation
function.

3.4.4 Output. Finally, this module consists of an FC layer with 1
unit and a sigmoid activation function, for each task. The resulting
outputs are the predictions of the dynamics of Task cohesion.

4 MODEL EVALUATION
4.1 Method
TBD is evaluated through the following procedure. A 3-fold nested
Leave-One-Group-Out (LOGO) cross-validation was carried out.
The hyper-parameters, here the learning rate and the number of
epoch, were in {0.01, 0.001, 0.0001} and {100, 200, 300, 500}, re-
spectively. The imbalance in the data was handled by automatically
weighting the loss function during training, in an inversely propor-
tional way to the class frequencies according to Equation 2. This
method is inspired by [24].

𝑐𝑤𝑖 =
𝑛𝑔

𝑛𝑐 ∗ 𝑛𝑖
(2)
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where 𝑐𝑤𝑖 is the class weight used in the loss function during
training for the class 𝑖; 𝑛𝑔 , the number of groups; 𝑛𝑐 , the total
number of classes (i.e., decrease and not-decrease) and𝑛𝑖 , the number
of occurrences for the class 𝑖 .
The model’s performances are evaluated using the following 2
metrics: (1) the F1-score per task (i.e., across the 15 rounds of the
LOGO) and (2) the mean of the F1-score obtained for the 5 tasks,
for each dimension. These metrics account for the label imbalance
(e.g., [20]) and give us insights into the ability of the model to
correctly predict under-represented classes.

Finally, according to Colas et al.’s guidelines [11] that suggest
using a number of seeds ranging from 5 to 25 depending on the data
and the algorithms, we train our models on 15 different randomly
extracted seeds and average the performances to obtain a more
robust measure of the architecture performances. In this way, we
aim at providing a reliable assessment of the models’ performances.
In this study, we first compare 3 baselines between each other to
select the most performing one and then we compare it to the TBD
model. Statistical significant differences between the performances
of the models were assessed via computationally-intensive ran-
domization tests using 𝛼 = 0.05. These are non-parametric tests
avoiding the independence assumption between the results being
compared and that are suitable for non-linear measures such as
F1-score [50].

4.2 Baselines
Three different models were used as baselines to predict the dynam-
ics of cohesion for the Social and Task dimensions. Such baselines
range from a simple but consolidated state-of-the-art approach to
more sophisticated approaches that increasingly address temporal-
ity and group contributions. Each baseline has been implemented
in 2 different ways: predicting the dynamics of the 2 dimensions of
cohesion separately or using a multilabel classification as a first at-
tempt to integrate the interplay between Social and Task cohesion.
The latter implies that both dimensions are tightly related to each
other since the overall loss is the unweighted sum of the losses
from both dimensions and only a final FC layer is differentiating
both dimensions, for each task. For the remainder of the paper, the
versions of the baselines predicting each dimension separately are
mentioned with the “_SD” suffix (as for Single Dimension) while
the multilabel versions are with the “_MD” suffix (as for Multiple
Dimensions). Eachmodel was evaluated following the procedure de-
scribed in 4.1, that is by using 3-fold nested LOGO cross-validation
with hyperparameters tuning.

4.2.1 Tree based approach. As stated by [48], Random Forest is one
of the most powerful algorithms for solving binary classification
problems. For this reason, we decided to use this classifier (RFC) as
our first baseline to predict the dynamics of cohesion by predicting
each of the 20-second thin slices. Since we are using the last 2
minutes of interaction, it means that the RFC makes 6 predictions
per task and dimension. Amajority voting is then applied over these
6 predictions to determine the overall prediction of the task, for each
dimension. At each round of the LOGO cross-validation, a feature
selection algorithm based on Kolmogorov-Smirnov statistic [25, 44]
is applied to reduce the feature set, as referred to in [38]. The
estimated hyperparameters were: the number of trees (in {100,

200, 300, 400, 500}), the maximum depth of the tree (in {10, 20,
30, 40, 50, 60, 70, 80, 90, 100}), the minimum number of samples
required to split an internal node (in {1, 2, 3, 4, 5}), and theminimum
number of samples required to be at a leaf node (in {2, 3, 4, 5, 6, 7}).
RFC, however, does not model the time dependencies between the
thin slices nor between the tasks and does not model the group at
multiple levels (e.g., individual and syntality levels).

4.2.2 Integrating the time dependencies between the thin slices and
between the tasks. Tomodel the time dependencies between the thin
slices and between the tasks, we designed the Full-Interaction LSTM
(FI-LSTM) model. This DNN architecture integrates the temporality
by inputting the features to an LSTM layer with 30 units (i.e., the
number of thin slices composing the whole interaction). This layer
is followed by a Dropout layer with a dropout rate of 0.2 and by 2
FC layers with 16 and 8 units, respectively, and a ReLu activation
function. FI-LSTM predicts the dynamics of Social and/or Task
cohesion for each of the 5 tasks of an interaction thanks to a final
FC layer with 1 unit (or 2 units if the model is using a multilabel
classification) and a sigmoid activation function for each task.
As for the RFC, FI-LSTM still does not integrate into its architecture
how a group, as well as individuals, contribute to cohesion.

4.2.3 Integrating time dependencies and both individuals and group
contributions. The last baseline is the from Individual to Group (fItG)
model. Similarly to FI-LSTM, this model predicts the Social and
Task cohesion’s dynamics while integrating the time dependencies
between the thin slices and between the tasks. In addition, it learns
individual as well as group representation of the features. FItG is
used as the pre-trained model for predicting Social cohesion in the
TBD architecture. Its architecture is described in Section 3.4.2. The
only difference resides in the output of the fItG. Indeed, as for the
FI-LSTM, we added 5 distinct FC layers with 1 unit (or 2 units if the
model is using a multilabel classification) and a sigmoid activation
function (1 for each task).

5 RESULTS AND DISCUSSION
TBD and each baseline were developed and trained using Python 3.7
and Tensorflow 2.1 on NVIDIA V100 GPUs. Table 3 summarizes the
performances of the 3 baseline algorithms both when they predict
the 2 dimensions of cohesion separately and when they predict
them using a multilabel approach. The results are reported per task
and per dimension. First, we tested whether the initial attempt of
using multilabel classification to take into account the interplay of
Social and Task cohesion outperforms the performances obtained
by predicting them separately. Then, the best baseline is retained
to be tested against TBD.

5.1 Comparing the baselines
5.1.1 Single-label vs Multilabel. RFC_MD significantly improves
the prediction of the Social dimension (from 0.61±0.01 to 0.62±0.02,
𝑝 = .044), while it significantly decreases that one of the Task di-
mension (from 0.55 ±0.02 to 0.53 ±0.02, 𝑝 = .002). Concerning the
2 other DNN architectures (i.e., FI-LSTM and fItG), no significant
difference is found for the Social dimension. Multilabel classifica-
tion, however, significantly improves the prediction of the Task
dimension: FI-LSTM_MD achieves 0.63 ±0.02 vs 0.59 ±0.04 obtained
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Table 3: F1-scores obtained for all the baselines predicting a single dimension vs using multilabel classification. Tables on the
left and on the right report the performances for the Social and Task dimensions, respectively. Results are displayed per task.

F1 scores ±std - Social dimension F1 scores ±std - Task dimension
RFC_SD RFC_MD FI-LSTM_SD FI-LSTM_MD fItG_SD fItG_MD RFC_SD RFC_MD FI-LSTM_SD FI-LSTM_MD fItG_SD fItG_MD

T1 0.45 ±0.00 0.47 ±0.06 0.54 ±0.12 0.52 ±0.08 0.53 ±0.09 0.52 ±0.08 0.51 ±0.04 0.42 ±0.06 0.54 ±0.08 0.64 ± 0.06 0.54 ±0.11 0.69 ±0.06
T2 0.20 ±0.04 0.23 ±0.04 0.40 ±0.15 0.52 ±0.11 0.53 ±0.11 0.59 ±0.12 0.37 ±0.05 0.35 ±0.03 0.61 ±0.11 0.66 ±0.08 0.52 ±0.08 0.55 ±0.11
T3 0.70 ±0.02 0.70 ±0.02 0.65 ±0.07 0.64 ±0.07 0.60 ±0.07 0.61 ±0.06 0.54 ±0.01 0.54 ±0.03 0.59 ±0.06 0.62 ±0.05 0.59 ±0.07 0.60 ±0.09
T4 0.89 ±0.02 0.87 ±0.00 0.86 ±0.04 0.85 ±0.04 0.87 ±0.03 0.88 ±0.03 0.60 ±0.02 0.61 ±0.02 0.40 ±0.11 0.41 ±0.10 0.43 ±0.13 0.43 ±0.08
T5 0.81 ±0.00 0.83 ±0.05 0.79 ±0.05 0.78 ±0.03 0.80 ±0.04 0.84 ±0.05 0.76 ±0.04 0.73 ±0.00 0.80 ±0.01 0.80 ±0.01 0.79 ± 0.02 0.78 ±0.03
Avg 0.61 ±0.01 0.62 ±0.02 0.65 ± 0.03 0.66 ±0.03 0.67 ±0.03 0.69 ±0.03 0.55 ±0.02 0.53 ±0.02 0.59 ±0.04 0.63 ±0.02 0.57 ±0.03 0.61±0.03

by FI-LSTM_SD (𝑝 = .006), fItG_MD achieves 0.61 ±0.03 vs from
0.57 ±0.03 obtained by fItG_SD (𝑝 = .004).

These results show that a simple approach to integrate the interplay
of the Social and Task dimensions (i.e., using multilabel classification)
partially improves the performances of the models predicting a single
dimension. In particular, improvements mainly concern Task cohesion.
This shows that a multilabel approach has the potential of improving
prediction. Such a kind of approach, however, neglects the insights
from the extensive research in Social Sciences that we expect to be
beneficial for the model as it implies that both dimensions are strongly
related to each other (i.e., they are both predicted from the same node
or layer) and equally contribute to cohesion (e.g., by summing the
losses of both dimensions for the DNN architectures).

5.1.2 Selecting the best baseline. Since the models using multil-
abel classification partially improve the performances of the ones
predicting a single dimension, we run an extensive analysis on
their performances to select the best baseline among the RFC_MD,
the FI-LSTM_MD and the fItG_MD. We first compare the perfor-
mances of the Social and Task dimensions for each model to analyse
whether a dimension is easier to predict or not. Then, we compare
each dimension, separately, across all the baselines. For each model,
the dynamics of Social cohesion are significantly better predicted
than the ones of Task cohesion. RFC_MD reaches 0.62 ±0.02 for the
Social dimension while it achieves 0.53 ±0.02 for the Task dimen-
sion. This difference in the performances is significant (𝑝 = .002).
FI-LSTM_MD also obtains significantly better results for the Social
dimension than for the Task dimension (𝑝 = .004) with a F1-score
of 0.66 ±0.03 and 0.63 ±0.02, respectively. Similarly, the fItG_MD
achieves a significantly better F1-score (𝑝 = .002) of 0.69 ±0.03
for the Social dimension with respect to the Task dimension that
reaches a F1-score of 0.61 ±0.03.

For every model, the performances of the first 2 tasks are partic-
ularly mispredicted. This could be explained by the fact that Social
cohesion develops over time and might not manifest during the early
stage of the interaction [43]. Concerning the Task dimension, the DNN
architectures (i.e., the FI-LSTM_MD and the fItG_MD) particularly
mispredicted Task 4. This result could be explained by the nature of
this task in which group members had to agree on a solution to solve
a quiz. In case of disagreements, group members might have provided
very different cohesion scores for the Task dimension, resulting in
opposite labels (i.e., decrease vs no decrease) within the same group.
This is a limitation of our labeling strategy that does not integrate
the potential disagreements within the group, making it harder for
the model to predict the dynamics of cohesion for this particular task.

The RFC_MD model achieves, on average over the 15 seeds, a F1-
score of 0.62 ±0.02 for the Social dimension and 0.53 ±0.02 for the

Figure 3: F1-scores of the Social and Task dimensions of co-
hesion for the RFC_MD (in blue), FI-LSTM_MD (in purple),
fItG_MD (in green) and the TBD (in yellow)models. P-values
of significant differences are displayed for each dimension
and between dimensions, for each model.

Task dimension. Statistical analysis shows that there are significant
differences in performances for the RFC_MD with respect to the
FI-LSTM_MD and the fItG_MD models for both Social (𝑝 = .001)
and Task (𝑝 = .001) dimensions (see also Figure 3). A post-hoc anal-
ysis using pairwise permutation t-tests was carried out and showed
that both the FI-LSTM_MD and the fItG_MD models outperformed
the RFC_MD for the Social (𝑝 = .003) and Task (𝑝 = .003) dimen-
sions. Indeed, for the Social dimension, the FI-LSTM_MD model
reached, on average over the 15 seeds, a F1-score of 0.66 ±0.03
while the fItG_MD obtained an averaged F1-score of 0.69 ±0.03.
This improvement of 0.03 observed for the fItG_MD performances
is also significant (𝑝 = .016). Regarding the Task dimension, the
FI-LSTM_MD achieved an averaged F1-score of 0.63 ±0.02 and the
fItG_MD reached 0.61 ±0.03. This difference is, however, not signif-
icant. To summarize, the fItG_MD model is the most performing
one with a F1-score of 0.69 ±0.03 and 0.61 ±0.03 for the Social and
Task dimensions, respectively.

These results highlight the benefits for a model to integrate tem-
porality and to learn higher representations of both individuals and
group to predict the dynamics of cohesion, especially for the Social
dimension. Indeed, for this dimension, the fItG_MD significantly out-
performed the other 2 models, confirming the importance of modeling
the group at both individual and syntality levels.
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5.2 Multilabel vs a Social Sciences inspired
approach

Concerning the dynamics of Task dimensions, TBD obtains a sig-
nificant improvement in the performances with respect to the
fItG_MD (𝑝 = .028) (see also Table 4). Indeed, it reaches a F1-
score of 0.64 ±0.03, improving the fItG_MD performances by 0.03.
Such an improvement means that TBD learnt new behavioral pat-
terns that globally improved predictions. TBD, however, does not
significantly improve the fItG_MD in all the tasks (see Figure 4):
it considerably enhanced Task 2 from a F1-score of 0.55 ±0.11 to
0.64 ±0.09 (𝑝 = .038) whereas Task 5 has a significant decrease in
performances passing from a F1-score of 0.78 ±0.03 to 0.74 ±0.04
(𝑝 = .004). In Task 2, group members had to concentrate on solving
problems on their own, limiting their movements and interactions
while in Task 5, they had to collaborate to agree to a solution. A
possible explanation for this trade-off in performances is that, for
a similar label (e.g., decrease), individual and group behaviors are
extremely different in these 2 tasks.

These results confirm that integrating the interplay of Social and
Task dimensions is beneficial for the prediction of the dynamics of Task
cohesion. Since bothmodels take into account the dynamics of cohesion
and model the group at both individual and syntality levels, they differ
by the way they integrate the Social and Task interplay. Motivated by
the Social Sciences theories claiming that, in groups of friends, Social
cohesion is more salient than Task cohesion [47] and that the Social
dimension first emerges [19] and creates a favorable environment to
consolidate Task cohesion [43], TBD takes advantage of a transfer
learning approach to integrate this dimensions interplay. Such an
approach enables TBD to use the Social representation of cohesion
previously learnt by the pre-trained model to optimize the prediction
of the Task dynamics. Furthermore, by enabling the retraining of the
pre-trained model during the TBD training phase, we also integrate
the impact of Task cohesion on Social cohesion.

6 CONCLUSION AND FUTUREWORK
In this paper, we presented an approach to exploit insights from
Social Sciences to build computational models of cohesion taking
into account the interplay between its Social and Task dimensions
over time. In particular, we described TBD, a DNN architecture that,
in addition to that, also incorporates temporal dependencies by

Table 4: F1-scores of the Social and Task dimensions for
the fItG_MD and the TBD models. As TBD is using the fItG
for predicting the dynamics of the Social dimension, perfor-
mances are similar for this dimension.

F1 scores ±std
Social Task

fItG_MD & TBD fItG_MD TBD
T1 0.52 ±0.08 0.69 ±0.06 0.71 ±0.09
T2 0.59 ±0.12 0.55 ±0.11 0.64 ±0.09
T3 0.61 ±0.06 0.60 ±0.09 0.65 ±0.07
T4 0.88 ±0.03 0.43 ±0.08 0.44 ±0.08
T5 0.84 ±0.05 0.78 ±0.03 0.74 ±0.04

Average 0.69 ±0.03 0.61±0.03 0.64 ±0.03

Figure 4: F1-scores per task and for the Task dimension of
the fItG_MD (in green) and the TBD (in yellow). The signif-
icance level is indicated for each task (ns stands for not sig-
nificant).

integrating, amongst others, LSTM layers and models individual as
well as collective contributions. TBD was evaluated vs 3 baselines
modeling cohesion in different ways. Our architecture allows us
to reach a significantly better F1-score for Task cohesion, that as
stated in literature is particularly hard to predict (e.g., [37]).

Cohesion is a complex social phenomenon and this work pro-
vides an approach to use some insights from Social Sciences to
improve computational models. It is, indeed, not exhaustive and
has some limitations. Firstly, all of the models are predicting the
dynamics of cohesion for the whole interaction once all the thin
slices are processed. In the future, we aim to design a model that
would predict the dynamics of cohesion at each task, relying solely
on the thin slices of the previous and/or current task(s) instead of
the whole interaction. Such a model would help leaning toward the
development of a “real-time” application. Furthermore, TBD takes
advantage of Social cohesion to predict Task cohesion. It would also
be interesting to develop a different TBD architecture to explore
whether and how Task cohesion improves Social cohesion predic-
tion. Although evidence towards this interplay is, to the best of our
knowledge, under-investigated in Social Sciences literature, it could
help to have a better understanding of cohesion. In this work, DNNs
were designed to integrate a pre-fixed number of person. Here, we
tested the architectures on groups of 3. Adding a new person to a
group would imply retraining the models. In the future, an archi-
tecture able to dynamically self-adapt to various sizes of groups
should be developed. In this paper, we focused on the Social and
Task dimensions of cohesion only. A new and open challenge will
be to build computational models that can also take into account
other dimensions (e.g., group pride) and their interplay.
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