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Abstract—Emergent states are temporal group phenomena that arise from collective affective, behavioral, and cognitive processes
shared among the group’s members during their interactions. Cohesion is one such state, mainly conceptualized by scholars as
affective in nature, and frequently distinguished into the two dimensions social and task cohesion. Whereas social cohesion is related
to the need of belonging to a group, task cohesion is related to the group’s goals and tasks. In this paper, we emphasize the
importance of behavioral interaction dynamics for predicting cohesion’s dynamics. Drawing from Social Science insights, we investigate
the interplay between social and task cohesion to predict their dynamics across group tasks from nonverbal behavioral features. Three
computational architectures exploiting transfer learning are presented. Transfer learning capitalizes on information learnt by a model for
a specific dimension to predict the dynamics of the other dimension. Results show that integrating the influence of social cohesion for
predicting dynamics of task cohesion outperforms state-of-the-art. For predicting dynamics of social cohesion, a model integrating the
reciprocal impact of social and task cohesion significantly improves performance with respect to the state-of-the-art, as well as
compared to a model only integrating the impact of task cohesion on dynamics of social cohesion.

Index Terms—Group Emergent States, Cohesion, Group Dynamics, Multimodal Interaction, Transfer Learning

1 INTRODUCTION

MPLICIT and explicit interactions among the members

of a group for coordinating their actions and intents to
achieve objectives shape affective, cognitive and behavioral
group processes and outcomes [1]. As a result of such inter-
actions, the literature categorizes some group phenomena
as emergent states (e.g., [1], [2], [3], [4]) that come into
existence due to group members’ behaviors expressed over
the course of dynamic group interactions. It follows from
this conceptualization that, in order to understand how
emergent group states come about, we need to study the un-
derlying behavioral group interactions. Traditionally emer-
gent states are captured through self-report surveys, which
are relatively easy to obtain but only allow very limited
insights into the dynamics of such states [5], [6]. Obtaining
a fine grained temporal resolution of emergent states would
indeed requires the administration of the surveys at many
times during interaction, as well as the need of disguising
these measurement tools to make them unobtrusive. Recent
efforts by scholars in Computer Science to develop machines
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able to engage humans in more effective activities over
the course of dynamic group interactions point to com-
putational approaches as alternative measures of emergent
states. Computational approaches can overcome limitations
of traditional survey measures, by allowing insights into the
actual behavioral dynamics of emergent group processes.

Group cohesion is a multidimensional emergent state
and it is the one mainly adopted as a test bed for inves-
tigating such computational approaches (see Section 2.2).
Cohesion is broadly defined as “the tendency for a group
to stick together and remain united to pursue goals and/or
affective needs” [7]. As this definition suggests, in addition
to the seminal article by Marks and colleagues [2] as well
as other studies (e.g. [8], [9], [10]), cohesion is an affectively
laden construct, or an affective emergent group state. The
specific affective nuance of cohesion, combined with the
development of behavioral computational approaches, cor-
roborates the need for the Affective Computing community
to include cohesion and other affect-laden group processes
among its research topics. Importantly however, while co-
hesion is an affectively laden construct, social interaction
behaviors matter greatly to the emergence of group cohesion
(for a detailed discussion, see [11]).

In this paper, we present a behavioral computational ap-
proach to the dynamics of cohesion, focusing on the facets of
its instrumental function, i.e., social cohesion and task cohe-
sion, and their interplay. We adopted the GAME-ON dataset
conceived to investigate the dynamics of cohesion in group
of friends [12]. In such a setting, as reported in the literature,
we can reasonably expect that cohesion has already emerged
and less volatile than in newly formed groups. Thus, we
focus on the dynamics of a “well-established” cohesion and
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not on the dynamics of the emergence of cohesion. Con-
cretely, we conceived three Deep Neural Networks (DNN)-
based architectures for predicting the interlaced dynamics
of social and task cohesion, that is, they exploit knowledge
learnt on one dimension of cohesion for predicting the
dynamics of the respective other one. Dynamics here refers
to changes in cohesion between a pair of consecutive tasks,
and its prediction is formulated as a binary classification
problem, that is, decrease vs not-decrease (not-decrease
including both stability and increase). The first two archi-
tectures, called Transfer Between Dimensions (TBD), largely
extend the work presented in [13]. Exploiting a transfer
learning approach, they take advantage of the information
learned by a model for a specific dimension to predict the
dynamics of the other one. More specifically, they use a pre-
trained model for predicting dynamics of social cohesion to
predict task cohesion dynamics and vice-versa. The third
architecture, called TBD-Reciprocal Impact (TBD-RI), is built
on top of the first two, and not only does it take advantage
of the information learned by each pre-trained model, but
also integrates the reciprocal impact between social and
task cohesion. Moreover, following suggestions from Social
Sciences (e.g., [6]), all these architectures: i) integrate time
dependencies (i.e. they look at the history of what the group
performed), and ii) take into account the contribution of
each group member as well as the performance of the group
as a whole. The performances of the models are evaluated
against a state-of-the-art model predicting the dynamics of
social and task cohesion in a multilabel setting [14].

The remainder of this paper is as follows: Section 2
conceptualizes cohesion as a behavioral team construct,
drawing from recent Social Science research, and also re-
views existing computational studies. Section 3 explains the
motivations behind the design of the DNN-based architec-
tures. In Section 4, the experimental setting is presented by
illustrating the dataset, the labeling strategy, and the mul-
timodal nonverbal features used. Next, Section 5 describes
the architectures, whereas their evaluation is presented in
Section 6. Then, Section 7 reports the results, and Section 8
discusses them.

2 BACKGROUND AND RELATED WORK
2.1 Cohesion: a multidimensional emergent state

Early definitions of cohesion were based on the force field
theory, considering individual and group actions as influ-
enced by external forces [15]. Subsequently, various defi-
nitions (e.g., [5], [16], [17], [18], [19]) as well as theoretical
models and frameworks of cohesion emphasize its affec-
tive component (e.g., [7], [20], [21], [22]), rather than its
behavioral underpinnings in group and team interactions.
For example, Kozlowski and Chao described cohesion as an
“affectively loaded” emergent state [5]. Similarly, Maynard
et al. stated that cohesion is “imbued by affective and emo-
tional forces” [19]. Some authors explicitly associate social
bonds and the sense of belonging to a group (e.g., [17], [23]).
For example, Beal ef al., [17] identified two components, or
dimensions, of cohesion, that is, Interpersonal Attraction and
Group Pride. Interpersonal Attraction refers to the shared
liking among the group members, while Group Pride is
conceptualized as the shared sense of honor derived from

being a member of a group. Of note, while these definitions
emphasize the affective connotations of cohesion, we still
maintain that behavioral group interactions will determine
the various levels of cohesion experienced by group mem-
bers. These include task-focused interaction behavior as
well as relational interaction [24]. Whereas communication
scholars typically view cohesion as a relational construct
(e.g., [25]), we also foresee that relational and task-based
component of cohesion are intertwined. Affect can also man-
ifest when group members engage in high-quality social
working relationships, hence creating a positive working en-
vironment to accomplish group goals and tasks. In this way,
affect is more related to the goal- and task-based activities of
the group, as expanded in one of the most popular cohesion
models developed by Carron and Brawley [7]. In this model,
cohesion is defined by the Individual Attraction to Group and
the Group Integration components that are both divided into
the social and task dimensions. For both components, the
authors state that all the reasons that would motivate a
group member to remain in a group and to stay united
could manifest through the social and task dimensions of
cohesion. This notion also hints at the possibility that the
two dimensions of cohesion are entangled, and may exert
reciprocal influences on each other. Building on and inte-
grating previous definitions and models, Severt and Estrada
introduced a multidimensional theoretical framework to
categorize the structural and functional properties of co-
hesion [22]. According to this framework, cohesion serves
two main functions that each comprise two separate but
interrelated dimensions. The first function refers to the emo-
tional benefits group members can experience in a group. It
is composed of the Interpersonal and Group Pride dimensions.
The Interpersonal dimension refers to the friendships bonds
that develop over time. The emergence of Group Pride is
driven by the tendency of individuals to identify with a
successful group as well as the desire to define one’s role
within it. The second function of cohesion involves all the
aspects of cohesion that highlight the goal- and task-based
activities of the group. It is organized in the social and task
dimensions. Furthermore, as in [20], the authors distinguish
two levels at which cohesion can be observed: horizontal
and vertical. Horizontal cohesion concerns relations among
peers, whereas vertical cohesion implies hierarchy referring
to the relationships between a member of authority and a
subordinate within the group context.

In this study, following the theoretical framework of
Severt and Estrada, we computationally investigate the tem-
poral dynamics of social and task dimensions of cohesion,
with a particular focus on their interplay. Specifically, our
study helps pinpoint the temporal fluctuation of social and
task cohesion levels and their reciprocal influence over time.
Furthermore, we investigate cohesion at the horizontal level,
since it aligns with the modern shift towards holacracy
organizational structures and self-managed teams [26].

2.2 Cohesion and computing

Despite the variety of definitions, theoretical models and
frameworks of cohesion offered by the literature, computa-
tional studies on cohesion are still scarce and neglect how
its dimensions are interrelated between them. More specif-
ically, first studies investigated which behavioral features
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concur to model and predict cohesion as an emergent state.
More recently, the researchers acknowledged the relevance
of cohesion as an affective emergent state and explicitly
integrate affect in their computational models.

Among the first class of studies, Hung and Gatica-Perez,
in their pioneering work, extracted a set of nonverbal audio
and visual features to capture the dimensions of cohesion
related to its observable aspects (e.g., rapport, involvement
or mimicry) and affect [27]. They explored what are the
most important features for inferring cohesion as a whole
(i.e., without distinguishing between its dimensions) using
supervised classifiers (e.g., Support Vector Machine). Their
findings show, for example, the relevance of turn-taking-
related features. Nanninga et al., extended this work, inte-
grating pairwise and group features related to the align-
ment of para-linguistic speech behavior [28]. Para-linguistic
mimicry cues are, indeed, among the most important ones
in signaling emotions [29]. In their study, they modeled,
through a Gaussian Naive Bayes classifier, the social and
task dimensions separately, and they predicted social di-
mension in a more accurate way than task dimension. More
recently, Walocha et al. also investigated what are the most
relevant movement features for predicting the dynamics of
the social and task dimensions. They trained and evaluated
a Random Forest model fed with features extracted from
motion capture data and using labels of cohesion dynamics
built from self-assessments. The relevance of the features
was assessed via their Shapley values. The results show
that proxemics and kinesics features are the most successful
at predicting social and task dynamics of cohesion. The
findings of all these studies, however, are often constrained
by the type of machine learning model used. Therefore, they
might not generalize to all the variety of models.

Among the computational approaches that explicitly
integrate affect in models” architecture, Dhall and colleagues
set up with a bench-marking platform to jointly investigate
how to address cohesion and emotion within the context
of the EmotiW challenge [30]. As part of this challenge,
researchers implemented various DNNs to predict group
cohesion from images and videos with (e.g., [31], [32],
[33]) and without (e.g., [34]) explicitly collecting information
about emotions. These works, however, only considered
cohesion as a whole, without distinguishing between its
dimensions. Lately, Maman et al., presented two DNN ar-
chitectures that implement a multitask learning approach to
jointly predict the social and task cohesion dynamics as well
as the valence of group emotion [14]. There, affect is taken
into consideration in both the features and the architecture.
The DNN architectures are inspired by the Top-down and
Bottom-up group emotion approaches described in [35].
The result show that a Bottom-up approach significantly
improves the prediction of the dynamics of task cohesion.
All of these studies, however, integrate the relationship
between cohesion and emotions in their architectures as a
proxy for modeling the affective role played by cohesion,
neglecting its innate affective function.

The architectures presented in this paper leverage both
these two classes of studies, and explore the interplay be-
tween the social and task dimensions of cohesion grounding
on Social Sciences’ insights.

3 THE INTERPLAY OF SOCIAL AND TASK COHE-
SION

Although scholars in Social Sciences clearly state that the
cohesion’s dimensions interplay somehow and somewhere
over time, it is less clear if and how this might occur empir-
ically. Some authors argue that social cohesion emerges first
and may impact the development of task cohesion (e.g., [36],
[37]). Other ones affirm that, especially at an early stage
of group formation, task cohesion might emerge before the
social one, and it could be seen as a shared experience
auspicious to group bonding (e.g., [38]). These two opposite
points of view might hold depending on many factors (e.g.,
the nature of the group members and group’s goals). In their
work, Severt and Estrada, indeed, highlight that not every
group exploits each dimension of cohesion [22]. Moreover,
Grossman et al. state that once social cohesion appeared
followed by task cohesion, after a while, a dynamical re-
ciprocal adjustment between the two dimensions occurs,
at the expense of social cohesion [37]. To the best of our
knowledge, the two last aforesaid studies are the only ones
mentioning such an adjustment, opening a third way to
study the interplay between the social and task dimensions
of cohesion. These different perspectives suggest that we
need to investigate both possible directions of influence
between the task and social cohesion dimensions.

3.1

Early work by Tuckman on small group development sug-
gests that cohesion is part of the life cycle of a group and that
the social dimension of cohesion develops first [36]. Empir-
ical work confirmed and extended Tuckman’s hypothesis
(e.g., [39], [40]) stating that groups go through the stages
of forming, storming, norming, performing, and, finally, ad-
journing [41]. During the forming, group members develop
social bonds and get to know each other, while, in the
storming, they start learning about each others’ strengths
and weaknesses, leading to the definition of their roles.
Such a categorization of the different stages of a group
encourages to consider the social dimension as a potential
driver for the task one. Moreover, Carron and Brawley
state that all dimensions are not equally present across
groups and that some dimensions might be more salient
depending on the developmental phase of the group (e.g.,
newly formed groups), and the specific interaction setting
(e.g., ameeting) [7]. In addition, the influence of a dimension
on another is likely to change gradually over time. In their
paper, they also conclude that, in particular contexts (e.g.,
in social groups), social cohesion would be more salient. In
[37], Grossman and colleagues support the predominance
of social cohesion in social groups and argue that social
cohesion emerges first, and sets the stage for task cohesion,
which develops later on. Lending further support to the
notion that social cohesion breeds task cohesion, Severt and
Estrada [22] advanced that social cohesion facilitates flexible
and constructive relationships in groups and teams, hence,
promoting task cohesion. While this relationship does not
imply causation, previous studies (e.g., [22], [37]) converge
on the impact of social cohesion on task cohesion across dif-
ferent group development stages and settings (e.g., number
of persons, context).

From social cohesion to task cohesion
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3.2 From task cohesion to social cohesion

While the path from social cohesion to task cohesion may
be more intuitive from a group developmental point of
view, the other path (i.e., task cohesion influencing social
cohesion) may also occur. Prior theorizing has hinted at
the possibility that task cohesion might emerge earlier in
a group’s developmental trajectory, before group bonding
and relationship formation come into play and create shared
experiences of social cohesion [38]. In earlier stages of
team development, task aspects can be more salient than
the social ones, which may require an extended period of
interaction [7]. Empirical work indicates support for the no-
tion of task aspects potentially influencing social cohesion.
A study of youth athletes showed that members of task-
focused teams report personal enjoyment and friendship
development [42]. Similarly, a study of teams of male college
athletes showed that a task-involving team climate predicts
aspects of social cohesion [43]. The authors discuss that a
task-involving climate can help reduce social barriers, foster
interdependence, and trigger positive social interactions,
which paves the way for social cohesion. While it remains
to be seen whether these findings extend to other types
of groups with a more heterogeneous gender distribution,
we interpret these earlier results in terms of a possible link
from task to social cohesion. Such a relationship also does
not imply causation. However, it may be more subject to
fluctuations over time [7], highlighting the importance of
observing the impact from task cohesion to social cohesion
at various stages of group development.

4 EXPERIMENTAL SETTING

4.1 Dataset

We adopted the GAME-ON dataset [12], specifically de-
signed to study the dynamics of social and task cohesion
over time. It consists of more than 11 hours of multimodal
data (i.e., video, motion capture, and audio recordings) from
15 groups of friends playing an escape game scenario. Each
group is composed of three different members, for a total of
45 persons (69% of participants identified themselves as fe-
male and 31% identified as male). Five triads are composed
of female members only, ten are composed of female and
male members. No triads is composed of male members
only. The participants’ ages ranged from 21y to 33y (M =
25.3y, SD = 3.1y).

The escape game comprised five tasks designed ad hoc
to elicit variations of cohesion along the two dimensions
(i.e., increase or decrease with respect to the previous task).
In Task 1 (T1), group members competed to find a key and
a box hidden in the room. In Task 2 (T2), the group had to
resolve a set of enigmas. Once dispatched to everyone, each
group member had to solve enigma on their own. In Task
3 (T3), each member had to solve a complex problem in a
limited time that required information from the other mem-
bers. In Task 4 (T4), the group had to guess the signification
of an unusual object, while in Task 5(T5), they had to present
how all the hints were interrelated to escape the room. The
average duration of the game was 35min 30s (SD = 4min
10s).

TABLE 1

Expected variations of social and task cohesion across tasks. In the
first column there are the transitions between two consecutive tasks (T;
is one among the five tasks, with T; the beginning of the game); in the
second column the tasks’ duration (average and standard deviation); in
the third column the expected variations of social and task cohesion: ‘-’

and '+ stand for decrease and not decrease, respectively. The -’ and

‘+’ in bold and double quoted highlight variations that were not
confirmed by the groups’ self-reports.

Expected variations in cohesion
Transition | Avg Duration +std | Social Task
TO0 - T1 8min 29s +1min 34s - -
T1-T2 7min 33s £1min 09s - +
T2 - T3 6min 27s +1min 28s + -
T3 - T4 5min 48s +1min 55s + +
T4 - T5 7min 13s £1min 52s + +

The dataset also includes, for each group, repeated self-
assessments of cohesion provided by every member. Co-
hesion was assessed at the beginning and at the end of
each task through a slightly modified version of the Group
Environment Questionnaire (GEQ) [44], a well-established
questionnaire composed of 18 items with a 9-point Likert
scale answering format. This questionnaire has already been
used in various studies to measure the social and task
dimensions of cohesion (e.g., [45], [46]). The GEQ version
adopted in GAME-ON consisted of eight items related to the
task dimension and six items related to the social dimension,
respectively. Some items were adapted to the context of the
escape game without changing the valence nor the gram-
matical construct, whereas two items were replaced since
they are close enough to the originals and more suited to the
context (see [12] for details). For each member and for each
task, a cohesion score was computed for the social and task
dimensions of cohesion by summing the items associated
to the corresponding dimension. The authors showed that,
except for the T1-T2 and T2-T3 transitions of task cohesion,
the expected variations of cohesion for both dimensions are
confirmed (see Table 1).

4.2 Multimodal nonverbal features

Previous works show that nonverbal communication is a
more powerful predictor of group cohesion than verbal be-
havior (e.g., [47], [48]). For that reason, we extracted 84 non-
verbal multimodal features characterizing social interaction
from the GAME-ON’s motion capture data and the audio
recordings. The features were extracted for individuals (I)
as well as for the whole group (G) over the last two minutes
of each task and in consecutive time windows lasting 20s.
The choice to focus on the last two minutes of each task was
motivated by the use, in this work, of the self-assessments
on cohesion provided by the group members. As reported in
several studies, indeed, self-assessments collected through
questionnaires are likely influenced by the last recalled
behavior (e.g., [49], [50]). The duration of the time windows
(i.e., 20s) is grounded on previous work on group interaction
(e.g., [51]) and cohesion perception (e.g., [52]). In the remain-
der of this section, statistics are computed on these time
windows unless differently specified. GeMAPS features are
extracted on sub-windows having sizes as recommended in
[53].
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4.2.1 Motion capture features

Proxemics

Proxemics is the study of how humans use and structure
space around them [54]. Previous studies show its relevant
role in nonverbal communication and social interaction
(e.g., [55]). As empirically demonstrated by Ashton et al.,
we expect groups that are standing closer together to not
interpret the presence of others as invading, meaning they
have a stronger social bond to each other and to trigger
positive affective reactions [56]. The following proxemics-
related features were extracted:

e Histogram of the interpersonal distance (G). Interper-
sonal distances are computed frame by frame as
the Euclidean distance between the projection of the
spines of two group members over the transverse
plane. This procedure is repeated for each pair. Then,
according to [54], they are clustered as follows: public
space (> 3.6 m), social space (in 3.6 m and 1.2 m) or
personal space (< 1.2 m), respectively.

e Maximum of the interpersonal distances (G)'. Based on
the interpersonal distances computed previously, the
maximum distance among the three pairs of hips at
each frame is selected.

e Distances from the group barycenter (I)'. The spine
of each group member is projected on the trans-
verse plane. The group barycenter on such plane
is computed as the barycenter of the triangle hav-
ing as vertexes the three spine’s projections. Finally
the Euclidean distance of such projections and the
barycenter is computed.

o Total distance traveled (I), computed as the length of
the trajectory covered by the spine’s projection of
each group member on the transverse plane.

e Time in F-formation (G), it is the amount of time
during which a group make a circular or a semi-
circular F-formation [57]. We focused on the circular
and semi-circular ones because they are indicative of
a shared-interest in the interaction [57]. To automat-
ically detect these F-formations, a cone is computed
from the chest of each member to approximate the
area where the group members’ attention is directed.
An F-Formation is detected when the cones of every
group member intersect.

Kinesics

Kinesics concerns the study of how humans communicate
using posture, gesture, stance, and movement [58]. Kinesics
features may indicate active engagement in the task and
thus are expected to have a positive impact on predicting
cohesion [59]. We extracted the following features:

e Kinetic energy (I)!, computed as the sum of the trans-
lational and rotational kinetic energies of the whole
body of each member. For the sake of simplicity,
masses and moments of inertia were taken equal to
one.

o Synchrony among kinetic energies (G), computed as the
S-Estimator of the kinetic energies of each member. S-
Estimator is a measure of synchronization exploiting

1. Mean, std, min, max and skewness statistics were applied over all
the values computed within each 20s time window

the normalized eigenvalues of the correlation matrix
of multiple signals [60].

e Group amount of motion (G)', computed as the stan-
dard deviation over 1s of trajectory followed by the
projection of each group member’s chest over the
transverse plane. The average among these three val-
ues is then computed to get a group feature at each
second, resulting in 20 values for the time window.

o Group’s amount of hand movements while not moving
(G}, computed as the standard deviation of the 3D
displacement of each member’s left and right hands.
A member is considered as not moving if its hip
position over the transverse plane did not exceed
50cm over one second. At each second, the mean
between both hands movement of the three group
members is computed, resulting in 20 values for the
time window. Hands movements are a vector for
specific emotions communication [61] and might also
be indicative of the group engagement in the task.

o Posture expansion (I): we computed the variations of
the volume of the bounding box (i.e., the smallest
box containing the body joints) [62]. Moreover, we
computed the variations of the area of the bounding
rectangles on the frontal and transverse planes. Pos-
ture expansion is expected to be related to dominance
and hierarchy, small differences and big overall ex-
pansion being positively correlated to social cohe-
sion [63] and emotions [64] and relevant for studying
other affective phenomena (e.g., stress detection [65])

o Touch’s duration (G), computed as the overall amount
of time a hand of a group member is touching the
upper body of another one. Here, a touch is detected
when the sensor located on the hand of a member is
less than 15cm away from a sensor on the upper body
of another one. Signaling by touch can communicate
task-related information as well as convey social
status and emotions [66].

Kinetic energy and posture expansion were filtered using
a Savitzky-Golay filter [67] with a polynomial order of five
and a coefficient of three to reduce noise.

4.2.2 Audio features

GeMAPS features

Features of the Geneva Minimalistic Acoustic Parameter Set
(GeMAPS) [53] were extracted using the OpenSmile soft-
ware [68]. We chose GeMAPS since it has been successfully
used in many affect-related prediction tasks (e.g., [69], [70]).
Moreover, it has been proven relevant for predicting various
other social phenomena (e.g., amusement, interest) [71].
GeMAPS includes the following features, for which the
mean was applied over each time window.

o Frequency related (I): Pitch, Jitter, F1, F2 and F3 fre-
quencies and F1 bandwidth. Such features are partic-
ularly relevant for describing vocal affective expres-
sions and, in particular, anger and sadness [71].

o Enerqy and amplitude related (I): Shimmer, Loudness
and Harmonic-to-Noise Ratio. These features are per-
tinent to detect, for example, stress [72].

o Spectral (balance) (I): Alpha Ratio, Hammarberg In-
dex, Spectral Slope (0-500 Hz and 500-1500 Hz), F1,
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F2 and F3 relative energies, and Harmonic Difference
(H1-H2 and H1-A3). They had been successfully
used for the detection of angry speech [73], and they
are also important for vocal valence and arousal [71].

Conversational features

Previous work on automated detection of cohesion shows
the relevance of taking into account conversational features
(e.g., [27]). First, a speech matrix was computed using the
voice activity detector (VAD) from Opensmile [74]. Then,
the following features were extracted from this matrix:

o Average turn duration (G), it is the average duration of
all the turns occurring during a group interaction. A
turn is considered over when a member stops speak-
ing for at least one second. In an extremely involved
conversation, turns duration of each participant is
theorized to be approximately equal [27]. Also, we
would expect that in highly cohesive groups, turns
will tend to be shorter as everyone would freely
contribute to the conversation.

o Time of overlapping speech (G), it is the total time for
which at least two members speak simultaneously.
Overlapping can be symptomatic of conflict or be a
sign of engagement between people [75].

o Total speaking time (I), computed for each member as
the total time they are speaking. To avoid counting
the small utterances, we assume that a member is
speaking if she speaks for at least one second.

o Laughter duration (I), automatically extracted using
the laugh detector in [76]. Once the laugh is ex-
tracted, the total time of laughing is computed for
each member. Laughter is, indeed, a highly social
phenomenon [77] that is a good indicator of group
cohesiveness [78].

4.3 Labels

We considered the task of predicting cohesion dynamics
as a binary classification problem. Starting from the self-
assessments on cohesion rated by each group member, we
built labels for decrease vs not-decrease (this one including
both stability and increase) as follows. Let’s consider the
ratings provided by each group member in two consecutive
tasks: this results, for each dimension, in six values (two
ratings for each of the three members). These ratings were
then ranked to limit the potential bias introduced by the
inter-member variance. Next, we computed the difference
between the ranks of the two consecutive ratings provided
by each group member, and we took the average of these
differences as the group’s cohesion score as shown in Equa-
tion 1:

RS (4) (4)
GSt, = — E ky) — k 1
St n 2 ranky, — ranky, 1

with GSt,, the group’s cohesion score for transition 7,1 —
T, with x € {1,2,3,4,5}, n the number of group members
(here set to 3), and rank the rank corresponding to the
associated rating given by group member i. The group’s
cohesion score indicates whether cohesion decreased or not
in a group for a specific dimension. Finally, the score was
binarized as follows: a value equal to 0 was assigned when
the group score was negative (i.e. a decrease in cohesion

occurred), whereas a value equal to 1 was assigned when
the group score was equal to 0 or positive (i.e. stability or
an increase in cohesion occurred). Overall, this labeling led
to an imbalanced distribution for the social dimension (i.e.,
75% of “No decrease” labels vs 25% of “Decrease” labels),
and to a balanced distribution for the task dimension (i.e.,
59% of “No decrease” labels vs 41% of “Decrease” labels).
Figure 1 shows the labels distributions of the social and
task dimensions, for each task. Such imbalance distributions
in the tasks were, however, expected due to how GAME-
ON was conceived (see Table 1), and were addressed as
described in Section 6.

5 DNN-BASED ARCHITECTURES FOR INTEGRAT-
ING SOCIAL AND TASK INTERPLAY

5.1 Baseline

In this work, we chose the from Individual to Group (fItG)
architecture [13] (see Figure 2) as a baseline for comparing
our architectures. FItG is composed of four components:
Input, Individual, Group and Output.

Input extracts the multimodal nonverbal features (see
Section 4.2). Features computed for each individual are pro-
cessed by the Individual component made of three branches
(one for each group member). Each branch consists of a
fully connected (FC) layer with a ReLu activation function
and 50 units, followed by a Long Short-Term Memory
(LSTM) layer with 50 units too. To let the model learn a
global representation of an individual, each layer is shared
according to Equation 2:

Yi=¢: | Y_(WX)) @
j=1

where Y; is the output of layer 7, ¢;, the activation function
of the layer i, W, the matrix of weights common to every
group member and X, the input related to player j. As the
groups are composed of three individuals, n is set to three.
The outputs of these shared layers are then concatenated
with the group features and are the input of the Group
component.

Group learns the behavior representation at the group
level. It is made of a FC layer with a ReLu activation func-
tion and 64 units, followed by an LSTM layer with 32 units.

i & 7

Task1l ~ 20 |

80 i

sy A s R a0 |

0% 50%

100% 0% 50%

No Decrease [ Decrease

(a) Social cohesion

No Decrease [Decrease

(b) Task cohesion

Fig. 1. Labels distributions of social (Figure 1a) and task (Figure 1b)
cohesion along the tasks.
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Fig. 2. The fltG model architecture. It has four components: Input,
Individual, Group, and Output. Input extracts the features: the individual
ones are processed by Individual (in blue), while the group ones are
concatenated with the output of Individual into Group (in green). Output
predicts the dynamics of social and task cohesion in a multilabel setting.

Next, a Dropout layer with a rate of 0.2 is used, followed
by another FC layer with a ReLu activation function and 16
units.

Finally, Output consists of a FC layer with a sigmoid
activation function and two units for each task enabling the
prediction of the dynamics of social and task cohesion in a
multilabel setting.

In total, fItG has 48152 trainable weights. Although this
architecture integrates the social and task cohesion interplay,
however it does not specify any path from one dimension
to the other one. Both dimensions are here tightly related to
each other since the overall loss is the sum of the losses from
both dimensions and only a final FC layer is differentiating
both dimensions.

5.2 The TBD architectures

We conceived the Transfer Between Dimensions (TBD) archi-
tectures taking inspiration by the Social Sciences insights
mentioned in Section 3. Due to the contradictory views
on which of the two dimensions of cohesion emerges first
and affects the other one, we designed two different archi-
tectures: TBD-Social (TBD-S) and TBD-Task (TBD-T). Both
TBDs use a transfer learning approach to take advantage
of the information learned beforehand on the dynamics of
a specific dimension to predict the dynamics of the other
one. Here, fItG is used as the pre-trained model. More
specifically, TBD-S predicts the dynamics of social cohesion
using a pre-trained fItG predicting the dynamics of task
cohesion, whereas TBD-T predicts the dynamics of task co-
hesion using a pre-trained fItG prediciting the dynamics of
social cohesion. TBD-T was already described in [13]. Figure
3a sketches the general TBD's architecture. It is composed of
four components: Input, Base, Target and Output detailed in
the following. Both TBD-S and TBD-T have a total of 49139
trainable weights.

Input is similar as in fItG: it is responsible for feature
extraction. Features computed for each individual as well as
for a group are distinctly processed by Base.

The Base component learns a representation of the group
behavior for a dimension (i.e., social for TBD-T and Task for
TBD-S) from which a group behavior representation for the
targeted dimension (i.e., the predicted dimension) will be
learned. For this purpose, Base uses a pre-trained version
of the fItG model predicting the dynamics of only one
dimension (i.e., social or task cohesion), and we enable the
retraining of its weights. Base takes as input both individual

followed by five branches (one for each task). Each branch
is composed of two consecutive FC layers with a ReLu
activation function and eight and four units, respectively.

Finally, Output predicts the cohesion dynamics for the
social dimension (in TBD-S) or the task dimension (in TBD-
T), across the five tasks. It is composed of five branches
(one for each task). Each branch consists of a FC layer with
a sigmoid activation function and one unit, predicting the
dynamics of one dimension for a specific task.

5.3 The TBD-RI architecture

Both TBDs integrate the social and task interplay unidi-
rectionnally (i.e., from social to task cohesion with TBD-
T and from Task to social cohesion with TBD-S). They,
however, do not integrate the reciprocal impact of the two
dimensions on each other. To try to integrate this reciprocity,
we designed the TBD-Reciprocal Impact (TBD-RI) architec-
ture. Built on top of both the TBD-S and TBD-T, TBD-RI
also takes advantage of a transfer learning approach to
learn a group behavior representation for each dimension
before concatenating them and jointly learning the social
and task cohesion dynamics. Figure 3b shows the TBD-
RI architecture. It is composed of four components: Input,
Dimension Specific, Reciprocal Impact and Output, and has
99002 trainable weights. Each component is detailed in the
following.

As in the TBDs architectures, Input extracts the same
features set to feed the two branches of the Dimension
specific component.

Dimension Specific learns a representation of the group
behavior for both social and task dimensions of cohesion.
This component splits into two branches (i.e., one for each
dimension) each one taking as input the same features
extracted by Input. One branch learns the group behavior
representation for task cohesion using a part of the TBD-
T architecture, while the other branch learns the group
behavior representation for social cohesion using a part of
the TBD-S architecture. The parts of the TBDs that are used
in the Dimension specific component are Base as well as
the first FC layer of Target that contains 16 units. Then, the
outputs from each branch are concatenated, resulting in a
tensor of shape [B x T,2 x F| with B the batch size (i.e.,
the number of group processed per batch), T the number of
timesteps (i.e., 6 timesteps per task, resulting in a total of
30 timesteps), and F the size of the features representation
of each dimension. This tensor is then processed by the
Reciprocal impact component.

Reciprocal Impact learns the reciprocal impact that the
social and task dimensions of cohesion have on each other
over time using as input the concatenation of the repre-
sentations learned by Dimension Specific. The component
consists of a first FC layer with a ReLu activation function
and 32 units, followed by another FC layer with a ReLu acti-
vation function of 16 units. Similar to the TBDs architecture,
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(a) TBDs architecture

(b) TBD-RI architecture

Fig. 3. The TBDs (a) and TBD-RI (b) architectures. Their Input component is similar to that one of fItG. (a) TBDs use, in Base, a pre-trained version
of fltG dedicated to the prediction of the social (in TBD-T) or task (in TBD-S) cohesion dynamics by reusing its Individual (in blue) and Group (in
green) components. Target learns a representation of the group behavior for the dynamics of the target dimension (i.e., social cohesion with TBD-S
and task cohesion with TBD-Tor task cohesion) on top of the dynamics of the Base dimension, for each of the five tasks. (b) TBD-RI is built on top
of TBD-S and TBD-T and learns, in Dimension Specific, a specific representation of the group behavior for each dimension. Both representations
are concatenated and processed by Reciprocal Impact. As in fltG, Output predicts the social and task cohesion dynamics in a multilabel setting.

there is a split into five branches (one for each task) with
two FC layers with a ReLu activation function and with
eight and four units, respectively, in each branch.

Finally, similarly to fItG, Output consists of a FC layer,
for each branch, with a sigmoid activation function and two
units. This enables the RI to predict the dynamics of the
social and task cohesion in a multilabel setting.

6 EVALUATION
6.1 Methods

A Leave-One-Group-Out (LOGO) cross-validation was
adopted. The reason is twofold: (i) the data size is small
(15 groups), so we needed to guarantee to have enough
training data for the learning, (ii) and we wanted to avoid bi-
asing model performance by learning and testing with data
coming from the same group. As reported in Section 4.1,
every group is composed of three persons and the groups
do not share persons. Thus, data was first split into training
and test sets consisting of 14 and one group(s), respectively.
Then, from the 14 groups of the training set, four groups
were randomly picked and retained as validation set. The
number of epochs was chosen, for each model, based on
the highest average performance in predicting the cohesion
dynamics on the groups of the validation set. To avoid over-
fitting and make the models more robust to noise, data aug-
mentation was performed on the training set. Concretely, for
each group, we added a Gaussian noise to all features (u=
0, o= {0.01, 0.05}). We tested these two values of sigma to
investigate the effect of such settings across the 15 rounds
of the LOGO. For each seed, we retained the one that
maximizes performance on the validation set?, augmenting
the data by a factor four. In addition, we also augmented the
training set by computing all six permutations of the order
of the group members to prevent models from learning
undesirable patterns related to the order in which group
members are processed. The final size of the training set was
240 groups. Building on preliminary studies, the models are
trained up to a maximum of 500 epochs with a fixed learning

2. These values were chosen running preliminary studies.

rate of 0.001. The weights of the models are updated at every
mini-batch. Each mini-batch is composed of four groups.
Model performance is evaluated every 10 epochs on the
validation set to determine the optimal number of epochs.
Then, we evaluated model performance on the test set for
each split of the LOGO (we recall that a test split includes
no group/individual belonging to the training split).

We accounted for data imbalance by weighting a binary
cross-entropy loss function in an inversely proportional way
to the class frequencies as in Equation 3:

Ny

®)

CWdim, T, = ——————
Ne * Ndim, T,
where n, is the number of groups; n., the total number
of classes (i.e., decrease and not-decrease) and ngim,T,, the
number of occurrences for a class of dimension dim in task
T The heuristic for computing the class weights in such a
way is inspired by [79].

The models’ performances were evaluated using F1 score
as a metric. More specifically, in this work F1 is computed as
the arithmetic mean of the per-class F1 scores. The F1 scores
obtained from the 15 rounds of the LOGO cross-validation
were averaged together giving an average F1 score value
for each task. Moreover, the average F1 score across all tasks
was also computed.

All the architectures presented in this study were devel-
oped and trained using Python 3.7 and Tensorflow 2.6 on
NVIDIA V100 GPUs.

6.2 Comparing the models

As previously mentioned, the models” performances were
evaluated over the 15 rounds of the LOGO cross-validation.
To limit the randomness present in the models (e.g., due to
the initialization of the weights and biases, and in regular-
ization like dropouts), we followed recommendations from
Colas and colleagues [80] that suggest evaluating models
on several random seeds (between five and 25 depending
on the data and algorithms) to obtain a reliable assessment
of the models’ performances. Here, we used 15 seeds and
we computed the average and the standard deviation of the
performance measures.
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We assessed potential significant differences between the
performances through a computationally-intensive random-
ization test. This is a non-parametric test avoiding the inde-
pendence assumption between the results being compared
and that is suitable for non-linear measures such as F1-
score [81]. We performed a k-sample permutation test using
the perm package developed in R [82]. Such a test performs
exact calculations using the Monte Carlo method during
the permutation test. The significance level o was equal
to 0.05. In case of multiple comparisons (i.e. comparisons
between three models or between the five tasks), a posthoc
analysis was carried out using pairwise permutation with
a False Discovery Rate (FDR) adjusted p-value [83]. Such a
p-value correction controls the false discovery rate, i.e., the
expected proportion of false discoveries among the rejected
hypotheses, hence integrating the rate of Type-I errors in the
p-value computation.

7 RESULTS

The overall average performances of TBDs and TBD-RI
were first compared against those ones of fItG [14]. Then, a
detailed analysis of the models” performances for the predic-
tion of the dynamics of task and social cohesion during each
task was carried out. Table 2 summarizes the overall average
performance for each model as well as the performances
for predicting the dynamics of each dimension of cohesion
during task. Figure 4 shows the box-plots of the tasks’
dynamics performances over the 15 seeds, for each model.

7.1 The dynamics of social cohesion

Regarding the dynamics of social cohesion, fItG reaches, on
average over the 15 seeds, a Fl-score of 0.67 +0.03, while
TBD-S obtains 0.66 +0.04 and TBD-RI achieves 0.70 £0.03. A
permutation test shows that there are significant differences
in performance between these three models (p = .018). A
posthoc analysis reveals that TBD-RI significantly outper-
formed both TBD-S (p = .012) and fItG (p = .036). Such an
improvement is explained by the significant improvement
on the dynamics prediction of T2 (p = .044), that is the only
task in which TBD-RI significantly outperforms fItG (from
0.51 £0.13 to 0.61 40.08). The dynamics of social cohesion
in this task remains, however, the hardest to predict for all
models. A permutation test run across the prediction of the
five tasks shows a significant difference between the tasks
performances for each model (p = .001 for every model). No
significant differences are found between the predictions of
dynamics in T1 and T2 across the models. These two tasks
are, indeed, the ones for which all models obtained the low-
est dynamics prediction performances. Models significantly
perform better on T3 than on T1 (p = .003, for every model)
and on T3 than on T2 (p = .004, p = .003 and p = .013 for
the fItG, TBD-S, and TBD-R], respectively). T4 and T5 are the
tasks in which all models perform better when predicting
the dynamics of social cohesion. (p = .003 between T3-T4
and p = .003 between T3-T5, for every model).

To summarize, TBD-RI is the best model for predicting
the dynamics of social cohesion. TBD-RI significantly out-
performs fItG and TBD-S, especially on T2. We observe a
similar pattern on the performances obtained on each task

across all models: T1 and T2 are the tasks for which the
lowest performances are obtained in predicting the social
dynamics, whatever the model; the dynamics of social co-
hesion in T3 is better predicted than in T1 and T2, while
performances obtained in T4 and T5 are the highest ones.

7.2 The dynamics of task cohesion

Concerning the dynamics of task cohesion, a permutation
test shows a significant difference in performance (p = .014)
between fItG (0.64 +0.02 Fl-score), TBD-T (0.66 +0.02 F1-
score) and TBD-RI (0.64 +0.03 F1-score). A posthoc analysis
reveals that the performance obtained by TBD-T is signif-
icant only with respect to that one of fItG (p = .018) but
not with respect to that one of TBD-RI. Similarly to our
findings regarding the dynamics of social cohesion, only one
of the tasks for which the dynamics are the worst predicted
is significantly improved as opposed to the baseline. In
fact, TBD-T significantly outperforms fItG on predicting the
dynamics in T3 (p = .034). TBD-T, indeed, reaches a F1-
score equal to 0.69 +0.10 on T3 compared to the Fl-score of
0.57 £0.13 obtained by fItG. Such improvement indicates a
change in the ability of the models to predict the dynamics
in a subset of tasks. Statistical analysis carried out through
a permutation test shows a significant difference between
the five tasks of every model (p = .001) for the fItG, TBD-
T and TBD-RI, respectively. A posthoc analysis shows that,
dynamics of task cohesion in T2 are significantly worst pre-
dicted than the ones in T4 (p = .024) and in T5 (p = .007) for
the fItG, significantly worst predicted than in T3 (p = .025)
and in T5 (p = .010) for TBD-T, and significantly worst
predicted than in T5 for TBD-RI (p = .005). Dynamics in
T5 remain significantly better-predicted across all the tasks
and models (except than the ones in T3 in TBD-T). TBD-
RI obtained less variations in performance across the tasks.
There is only a significant difference between T5 and the
other tasks (p = .005 for each pair of tasks T1-T5, T2-T5,
T3-T5 and T4-T5), meaning that performances on T1, T2, T3,
and T4 are equivalent.

To summarize, only TBD-T outperforms fItG, especially due
to the significant improvement on T3. Also, dynamics of task
cohesion in T2 remains among the worst predicted across all the
models, while T5 is the task for which models significantly perform
better according to F1-scores.

8 DiscussION

Since theoretical models of cohesion indicate that the so-
cial and task dimensions of cohesion are entangled, we
conceived three architectures, TBD-S, TBD-T and TBD-RI,
using transfer learning to jointly predict the dynamics of
social and task cohesion. Transfer learning helps the training
of the models in two ways. First, it enables them to start
with a better weights’ initialization, hence speeding up the
training process. Then, it leverages knowledge from the pre-
trained model on the dynamics of a specific dimension to
predict the other one. The fact that, for the prediction of
the dynamics of the task dimension, TBD-T outperformed
fItG, illustrates this point and confirms insights from Social
Science regarding stages of group development (i.e., social
cohesion sets the stage for task cohesion). There is, however,
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TABLE 2
Average F1-scores and standard deviations on the 15 seeds for each model, each task, and each dimension. The number between brackets next

to each task is the rank of the performance obtained by the model over the five tasks. An equal number indicates that there is not a statistical
difference between the performances. In bold the average performances that are significantly better across all the models.

Average Fl-scores Estd (rank)
fItG TBD-S/T TBD-RI
Social Task Social Task Social Task

T1 0.52 £0.10 (4) | 0.65 +0.07 (2) | 0.50 £0.11 (3) | 0.63 +0.07 (2) | 0.56 £0.10 (4) | 0.64 +0.09 (2)

T2 0.51 £0.13 (4) | 0.56 £0.12 (3) | 0.49 £0.11 (3) | 0.59 £0.09 (2) | 0.61 £0.08 (4) | 0.61 £0.09 (2)

T3 0.65 £0.07 (3) | 0.57 £0.13 (3) | 0.66 £0.06 (2) | 0.69 £0.10 (1) | 0.69 £0.06 (3) | 0.62 £0.11 (2)

T4 0.87 £0.04 (1) | 0.66 +0.14 (2) | 0.83 £0.09 (1) | 0.65 +0.09 (2) | 0.85 £0.05 (1) | 0.57 +0.10 (2)

T5 0.80 £0.04 (2) | 0.74 £0.07 (1) | 0.80 £0.05 (1) | 0.76 £0.09 (1) | 0.79 £0.05(2) | 0.78 +0.05 (1)

Average 0.67 £0.03 0.64 £0.02 0.66 +£0.04 0.66 +0.02 0.70 +0.03 0.64 £0.03
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Fig. 4. Box-plots of the tasks’ performances over the 15 seeds for fltG (4a), TBD-T and TBD-s (4b) and TBD-RI (4c). Significant differences between
the prediction of dynamics of the tasks are marked with a “*”. There is a similar pattern regarding the performances for predicting the dynamics
of each task for the social dimension of cohesion: models obtain the worst performances in T1 and T2, while they reach the best performances in
T4 and T5. Regarding the performances for predicting the dynamics of task cohesion, T2 remains one of the tasks for which the dynamics are the

worst predicted across all the models, and T5 is always the one for which they are the best predicted.

no significant difference regarding the performances for pre-
dicting the dynamics of the social dimension between fItG
and TBD-S. This also corroborates findings from Social Sci-
ence regarding this specific direction of influence (i.e., task
cohesion helps establish social cohesion) since it particularly
concerns newly formed groups (e.g., [7], [43]). All the groups
from the GAME-ON dataset are, indeed, groups of friends,
limiting the applicability of such a theory. These results
imply that task aspects, alone, cannot improve predictions
of social cohesion because their relevance for understanding
social cohesion hinges on their interdependence with social
aspects. For example, when groups experience enjoyment
due to their shared task focus, this can spill over into
social cohesion. A shared task focus, without the mutually
shared enjoyment of that experience (i.e. without the rela-
tional component), will, however, not affect social cohesion.
Therefore, predicting the dynamics of cohesion benefits
from integrating such an interplay with shared information.
Depending on the task and the context, social or task aspects
of cohesion might be predominant; hence, information from
both dimensions is essential to improve predictions of the
cohesion’s dynamics and generalize to various tasks. The
latter point is, indeed, confirmed by the TBD-RI perfor-
mances for the dynamics of the social dimension. Such a
model outperforms TBD-S by incorporating both TBD-S and
TBD-T group behavior representations of each dimension
and by combining them to learn the joint group behavior
representation of both dimensions and predict the social and
task dynamics of cohesion. These overall improvements of
performances are mainly due to a significant improvement

in performances on T2 by the TBD-RI regarding social
cohesion and on T3 by TBD-T for task cohesion. Regarding
T2, such an improvement might be explained by the task-
and performance-driven nature of the task. As mentioned in
Section 4, in this task, there was almost no social interaction
among group members but they could see how successful
each group member was. The group had to dispatch a set
of enigmas to everyone and resolve a maximum of them on
their own, without helping each other and they had to walk
to a specific location to indicate that one enigma was solved.
In this particular task, the sense of unity and the feeling of
cohesion probably relied on the group task performances
(i.e., how many enigmas each group member solved). In
such a limited interaction, task cohesion provides essential
information for predicting the dynamics of social cohesion
since it is predominant. Regarding the improvement in
performance on T3, we observe the opposite pattern. In this
task, participants had to solve complex and contradictory
enigmas under time pressure while helping each other. Such
a setting challenged the members of the group in terms of
organization and skills. Facing these difficulties, the groups
might refocus themselves on the social aspects of cohesion
to accomplish the task. For this particular task, using the
knowledge learned about social cohesion to predict the
dynamics of task cohesion is particularly efficient and helps
understand the context.
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9 CONCLUSION

In this paper, we computationally investigated cohesion, a
multidimensional group emergent state typically considered
as an affective construct in the literature, and originating
from group members’ behavioral interactions. We specifi-
cally focused on the dynamics of social and task cohesion
and investigated their interplay over time. In this work,
we adopted the GAME-ON dataset conceived to study the
dynamics of task and social cohesion in groups of friends
performing a variety of social activities organized in an
escape game.

As discussed in the Social Science literature, a plethora
of factors may shape the ways in which the social and the
task dimensions of cohesion are interrelated. In some cases,
social cohesion may be a driver of task cohesion, especially
in groups with strong social bonds, while the contrary might
hold true for more task-focused groups (cf. [22], [44]). To
account for these different possibilities of mutual influence
between the task and social dimensions of cohesion, we
developed three DNNs: TBD-S, TBD-T, and TBD-RI. They
adopt a transfer learning approach to take advantage of
the information learned for one dimension to predict the
dynamics of the other one. TBD-RI, exploiting both TBD-S
and TBD-T, offers a way to integrate the reciprocal impact of
both dimensions on each other. These DNNs were evaluated
against a state-of-the-art model that predicts the dynamics
of social and task cohesion in a multilabel setting. Results
show that, for the prediction of the dynamics of the social
dimension, TBD-RI outperformed the other models, espe-
cially on T2, while for the task dimension, TBD-T achieved
significantly better overall performance than the baseline, in
particular on T3.

While the obtained results corroborate insights from
Social Science, our work also has some limitations. First, our
sample comprised groups of friends. Further investigation
is needed to understand to what extent our results apply to
different types of groups. For example, in groups of work
colleagues, task cohesion might emerge before social cohe-
sion. Moreover, our architectures are designed to process
groups of a specific size (here three persons), which limits
the applicability of our approach to the analysis of cohesion
in larger groups or with a number of members changing
over time. Also, our architectures focused on predicting
social and task cohesion dynamics on a set of tasks that did
not require particular skills and in which group members
were freely interacting, hence, reflecting the activities that
social groups might encounter. Further analysis is needed to
evaluate if our architectures adapt to more complex tasks in
other environments where group members movements and
actions are limited (e.g., during a meeting). Finally, cohesion
is a multidimensional emergent state with additional facets
beyond the most frequently investigated task and social
dimensions, which we also focused on here. Group pride,
for example, is another cohesion dimension that could be
investigated from a computational point of view as well as
the way it could interrelated with the social and the task
dimensions for developing more exhaustive computational
models of cohesion.
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