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Résumé

Au cours de la dernière décennie, un nouveau domaine de recherche multidisciplinaire
appelé traitement des signaux sociaux (SSP) a émergé. Il vise à permettre aux machines
de détecter, reconnaître et afficher les signaux sociaux humains. L’analyse automatisée
des interactions de groupe est l’une des tâches les plus complexes abordée par ce domaine
de recherche. Récemment, une attention particulière s’est portée sur l’étude automatisée
des états émergents. En effet, ceux-ci jouent un rôle important dans les dynamiques de
groupe car ils résultent des interactions entre les membres d’un groupe.

Dans cette Thèse, nous abordons l’analyse automatique de la cohésion dans les inter-
actions de petits groupes. La cohésion est un état émergent affectif multidimensionnel
qui peut être défini comme un processus dynamique, reflété par la tendance d’un groupe à
rester ensemble pour poursuivre des objectifs et/ou des besoins affectifs. Malgré la riche
littérature disponible sur la cohésion du point de vue des Sciences Sociales, l’analyse
automatique de la cohésion en est encore à ses débuts.

En s’inspirant de connaissances tirées des Sciences Sociales, cette Thèse vise à dévelop-
per des modèles informatiques de cohésion suivant quatre axes de recherche, en s’appuyant
sur des techniques d’apprentissage automatique et d’apprentissage profond. Ces modèles
doivent en effet tenir compte de la nature temporelle de la cohésion, de sa multidimension-
nalité, de la façon de modéliser la cohésion du point de vue des individus et du groupe,
d’intégrer les relations entre ses dimensions et leur évolution dans le temps, ainsi que de
tenir compte des relations entre la cohésion et d’autres processus de groupe. De plus, face
à un manque de données disponibles publiquement, cette Thèse a contribué à la collecte
d’une base de données multimodales spécifiquement conçue pour étudier la cohésion, et
pour contrôler explicitement ses variations dans le temps. Une telle base de données per-
met, entre autres, de développer des modèles informatiques intégrant la cohésion perçue
par les membres du groupe et/ou par des points de vue externes.

Nos résultats montrent la pertinence de s’inspirer des théories tirées des Sciences So-
ciales pour développer de nouveaux modèles computationnels de cohésion et confirment
les avantages d’explorer chacun des quatre axes de recherche.
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Abstract

Over the last decade, a new multidisciplinary research domain named Social Signal Pro-
cessing (SSP) emerged. It is aimed at enabling machines to sense, recognize, and display
human social signals. One of the challenging tasks addressed by SSP is the automated
group interaction analysis. Recently, a particular emphasis is given to the automated study
of emergent states as they play an important role in group dynamics. These are social pro-
cesses that develop throughout group members’ interactions.

In this Thesis, we address the automated analysis of cohesion in small groups inter-
actions. Cohesion is a multidimensional affective emergent state that can be defined as
a dynamic process reflected by the tendency of a group to stick together to pursue goals
and/or affective needs. Despite the rich literature available on cohesion from a Social
Sciences perspective, its automated analysis is still in its infancy.

Grounding on Social Sciences’ insights, this Thesis aims to develop computational
models of cohesion following four research axes, leveraging Machine Learning and Deep
Learning techniques. Computational models of cohesion, indeed, should account for the
temporal nature of cohesion, the multidimensionality of this group process, take into ac-
count how to model cohesion from both individuals and group perspectives, integrate the
relationships between its dimensions and their development over time, and take heed of
the relationships between cohesion and other group processes. In addition, facing a lack
of publicly available data, this Thesis contributed to the collection of a multimodal dataset
specifically designed for studying group cohesion and for explicitly controlling its varia-
tions over time. Such a dataset enables, among other perspectives, further development
of computational models integrating the perceived cohesion from group members and/or
external points of view.

Our results show the relevance of leveraging Social Sciences’ insights to develop new
computational models of cohesion and confirm the benefits of exploring each of the four
research axes.
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Chapter 1
Introduction

Contents
1.1 Context of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 RQ1: What computational architectures can be implemented
to automatically predict cohesion and its dynamics? . . . . . . 4

1.2.2 RQ2: How other group processes can inform the modeling of
cohesion? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 8

T HIS Chapter presents the context in which this Thesis is placed and describes
its goal. It also introduces the four research axes from which stemmed the two
research questions here investigated. The motivations behind these research
questions and the main steps we realized to answer them are also explained. A

list of the contributions of this Thesis and the publications that resulted from them is also
given. The Chapter ends with the organization of the different Chapters of the Thesis.

1.1 Context of the Thesis

Throughout the human evolution, group interactions have been key to our species’ suc-
cess and have played a central role in the development of today’s society (Van Vugt and
Schaller, 2008; Tomasello et al., 2012). From an evolutionary perspective, humans are ul-
tra social animals (Tomasello, 2014) that gather and cooperate to deal with specific threats
and opportunities. Such a behavior can be viewed as an adaptive strategy that increased
the survival and reproductive success of ancestral humans (Van Vugt and Schaller, 2008).
Belonging to a group is, indeed, one of the most important human needs (Baumeister
and Leary, 1995), and being accepted by it (and by society) is located at the top priority
in psychological needs according to Maslow (1943)’s hierarchy of needs. Thus, humans
multiplied their interactions for survival. As of today, interactions happen in everyday life

1



CHAPTER 1 – INTRODUCTION

with a broad range of people (e.g., family) and in diverse contexts (e.g., in a workplace),
requiring people to constantly adapt to appropriately behave. These social skills define the
social intelligence which refers to the ability to read other people, understand their inten-
tions and motivations, and act accordingly to manage human relations (Thorndike, 1920;
Ambady and Rosenthal, 1992; Albrecht, 2006). The skills of social intelligence have been
argued to be indispensable and perhaps the most important for success in life (Goleman,
2006). These are, however, not inherited and are learned from very early ages throughout
face-to-face as well as group interactions.

Group interactions and group dynamics, in particular, have a long history in So-
cial Sciences disciplines (e.g., Lewin, 1951; Bennis and Shepard, 1956; Tuckman, 1965;
Wheelan, 1994; Birmingham and McCord, 2002; Cronin et al., 2011; Kozlowski, 2015).
Scholars in Social Sciences shifted from a static to a dynamic view of the processes
and showed that group-level processes (e.g., cohesion) are fundamentally different from
individual-level processes (Abrams and der Pütten, 2020). On one hand, according to
what Lewin (1951) called “interactionism”, individual behavior results from personal and
environmental factors as well as from the interaction of both. Thus, a group influences
the individuals’ behavior since they interact in a social setting. On the other hand, group
processes can only be understood trough the group perspective and cannot be fully un-
derstood by observing its individuals without considering the group influences or social
settings (Forsyth, 2012).

Recently, Kozlowski and Chao (2018) highlighted that, despite the agreement on the
dynamic nature of group processes, they have primarily been assessed as static con-
structs. Also, they stated that more research is needed to appropriately conceptualize
group processes that are “multilevel phenomena that emerge, bottom-up from the interac-
tions among group members over time”. Still according to Kozlowski and Chao (2018),
one of the promising streams of scientific inquiry is the computer study of group pro-
cesses.

With the advent of new technologies, new research domains such as Social Signal
Processing (SSP) and Affective Computing (AC), emerged with the aim of developing
machines that are socially and emotionally aware. In fact, being able to automatically
analyze, detect and reproduce social and affective skills and enhance group processes,
would provide machines that are, a priory, socially ignorant (Pentland, 2005), the power
to dynamically adapt to humans and support them, opening new opportunities in a broad
range of domains (e.g., virtual agents, robotics). At first, these research domains focused
on analyzing individuals (e.g., emotion recognition, Cowie et al., 2001). A recent shift
towards the study of groups emerged, with a particular emphasis on group affect. This is
primarily due to its central role in group dynamics (Waller et al., 2016) and the fact that
it is a potential driver of emergent states such as cohesion (Allen et al., 2021). Emergent
states are social processes that result from the micro-level affective, behavioral, and cog-
nitive interactions among group members (Marks et al., 2001). This new focus entails
both technological and social difficulties due to the high diversity of groups and the com-
plexity of modeling human interactions and their evolution over time.

The aim of the Thesis is to develop automated methods to study cohesion, a multidi-
mensional group affective process that develops over time, in small groups interactions.
According to Carron and Brawley (2000), cohesion is “a dynamic process that is reflected

2



1.2. RESEARCH QUESTIONS

in the tendency for a group to stick together and remain united in the pursuit of its in-
strumental objectives and/or for the satisfaction of member affective needs”. Despite
disarray concerning the number of dimensions of cohesion and their functions, scholars
in Social Sciences agree on its Social and Task dimensions. Social cohesion refers to the
social bonds between group members while Task cohesion corresponds to the degree of
commitment to the group’s tasks and goals. This Thesis encompasses the exploration of
the cohesion dynamics as well as the interplay between its Social and Task dimensions
over time. It also includes the modeling and integration of a group and the relationships
between cohesion’s dimensions and with other group processes such as emergent leader-
ship and group emotion. These directions of research are grounded on Social Sciences
insights (e.g., López-Zafra et al., 2008; Kozlowski and Chao, 2012; Severt and Estrada,
2015; Grossman et al., 2015; Salas et al., 2015; Vanhove and Herian, 2015) and highlight
some of the multiple challenges that this Thesis aims to address. The research questions
(RQs) described in this Chapter are first motivated and the main steps we undertook to
answer them are presented.

All the work presented in this Thesis has been partially supported by the French Na-
tional Research Agency (ANR) in the framework of its JCJC program (GRACE, project
ANR-18-CE33-0003-01, funded under the Artificial Intelligence Plan).

In addition to my Thesis supervisors, I received help from Professor Gualtiero Volpe,
University of Genoa, and his team, as well as from Professor Nale Lehmann-Willenbrock,
University of Hamburg (see work in Chapter 3). At Télécom Paris, Professor Nicolas
Rollet provided some feedback on the theoretical aspect of interactions, and André-Marie
Pez developed the VR platform mentioned in Chapter 7. Moreover, I co-supervised, with
Giovanna Varni, Fabian Walocha and Soumaya Sabry that partially contributed to the
work presented in Chapter 4, Chapter 5 and Chapter 6.

1.2 Research Questions

The motivation of the work presented in this Thesis was to design and implement com-
putational models of cohesion. Inspired by Social Sciences insights and existing compu-
tational methods, we first identified and targeted specific problems that are related to the
automated study of cohesion and, sometimes, that are shared with other emergent states
and group processes. Thus, in Chapter 2, we organized the literature into four research
axes (RAs) in which we clustered the various existing approaches taken for the automated
analysis of cohesion and we also introduce our own approaches according to them. These
research axes are described in Chapter 2 and are the following:

RA1: Temporal nature of cohesion

RA2: Group modeling

RA3: Interplay between its dimensions

RA4: Relationships with other group processes

The two research questions that we address in this Thesis, stem from these research axes.

3



CHAPTER 1 – INTRODUCTION

1.2.1 RQ1: What computational architectures can be implemented
to automatically predict cohesion and its dynamics?

The first step in answering this RQ was to identify and implement the features charac-
terizing the interaction that could be relevant to predict cohesion dynamics and its So-
cial and Task dimensions, in particular. While verbal communication plays an important
role in social interactions, it is known that a valuable amount of information is delivered
non-verbally (Knapp et al., 2013). Thus, most of the studies interested in the automated
analysis of cohesion and related group processes focused on extracting nonverbal fea-
tures, showing that nonverbal communication is a more powerful predictor of group-level
cohesion than verbal behavior (e.g., Kubasova et al., 2019; Alsulami, 2021). For these
reasons, the Thesis concentrates on extracting nonverbal features.

Taking inspiration from Social Sciences’ insights and computational studies on cohe-
sion, we developed nonverbal features, using audio and motion capture data. Furthermore,
to start investigating RA2 from the input, we extracted features computed from individu-
als and from the group as a whole.

Building on the first three research axes, we implemented our computational architec-
tures to answer the following subresearch questions (SRQs):

(SRQ1) How to integrate the temporal nature inherent to cohesion?

(SRQ2) How to take into account both individuals and group behaviors that result from,
and are influenced by, the group members’ interactions?

(SRQ3) How to model the interplay between the Social and Task dimensions of cohesion
over time?

Most of the computational studies related to cohesion rely on different definitions,
making it difficult to compare findings across studies (e.g., Hung and Gatica-Perez, 2010;
Kantharaju et al., 2020; Ghosh et al., 2022). Moreover, these studies use Machine Learn-
ing models built to predict cohesion over a short period of time (e.g., 2 minutes, Hung and
Gatica-Perez, 2010), without taking previous elements of interaction into account. Also,
these models are designed to predict the presence or the absence of cohesion as a whole
(i.e., without distinguishing between dimensions) or for the Social and Task dimensions,
separately, without investigating the relationships between cohesion’s dimensions over
time. Finally, group processes such as cohesion should be studied from both individual
and group perspectives to fully capture such an affective emergent state, by integrating the
complex relationships between the group members and their group behavior that results
from their interactions.

Concretely, in Chapter 5, we describe various computational models of cohesion that
range from a simple but consolidated state-of-the-art approach to more sophisticated ap-
proaches that increasingly address each SRQ. The development of these architectures was
part of an iterative process that led to a large number of experiments. Only the relevant
architectures are presented and discussed in this Thesis.
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1.2.2 RQ2: How other group processes can inform the modeling of
cohesion?

We grounded our work on Social Sciences’ knowledge. Severt and Estrada (2015), indeed,
state that various links between cohesion and other group processes may be observed
depending on the function (e.g., instrumental vs affective), the dimension (e.g., Social
vs Task), or the level of analysis of cohesion (e.g., horizontal vs vertical) that is being
investigated. Furthermore, cohesion is an affective emergent state (e.g., Kozlowski and
Chao, 2012; Maynard et al., 2015; Rapp et al., 2021) that develops over time. With this
in mind, the focus is on integrating the links between cohesion and emergent leadership
and between cohesion and group emotion into the computational models’ architectures.

The cohesion-leadership link has already been proved (e.g., Light Shields et al., 1997)
and could help to understand the group dynamics while the link between emotions and
cohesion is straightforward (cohesion is, indeed, an affective emergent state) and could
provide contextual information regarding the group members’ affective states. In addi-
tion, Barsade and Gibson (1998) demonstrated a relationship between Social cohesion
and emotion as well as between Task cohesion and emotion, corroborating the relevance
of integrating these relationships into our computational models.

Leveraging the relationships between two (or more) group processes to computation-
ally investigate them has already been explored, and showed promising results (e.g.,
Parthasarathy and Busso, 2017). Links with cohesion, however, had only been used in
studies to improve computational models of other group processes (e.g., emotions, Ghosh
et al., 2022). There is, to the best of our knowledge, no automated study of cohesion
taking advantage of its links with other group processes to improve cohesion predictions
and, in particular, for its Social and Task dimensions. Thus, the challenge of RQ2 is to
fill this gap by integrating the links between cohesion and other group processes into our
computational models of cohesion, with the aim of improving their performances.

In Chapter 6, we computationally explore how to integrate the links between (1) co-
hesion and group emotion, and (2) cohesion and emergent leadership, respectively. As for
(1), we leveraged Social Sciences’ insights to design two DNN architectures to integrate
such links, following the Top-down and Bottom-up approaches (Barsade and Gibson,
1998). About (2), we introduced two different families of approaches focusing on inte-
grating leadership information into our models (i.e., by intervening in the features or in
the architecture of the models).

1.3 Contributions of the Thesis

First contribution: A structured survey on cohesion for supporting the automated anal-
ysis of cohesion in small groups interactions.

Multiple definitions, theoretical models, and frameworks of cohesion exist with major
differences (e.g., the number of dimensions). Such disarrays in the theoretical conceptu-
alization of cohesion ultimately slow the emergence of robust and reliable computational
studies of cohesion. Moreover, automatically analyzing cohesion is a complex task. Co-
hesion is, indeed, a group affective multidimensional emergent state. Thus, its temporal
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nature, its various dimensions (and their interplay), and its links with other group pro-
cesses are all challenges to be met, with a plethora of approaches that could be employed.
In Chapter 2, we defined four research axes to structure our work and ease the develop-
ment of new approaches for addressing the automated analysis of cohesion.

Based on these axes, we reviewed and clustered the approaches employed in existing
work on the automated analysis of cohesion according to their research axis and goal. In
fact, an approach could be employed with the goal of impacting the computational model
at its input (e.g., segmentation of the features), model’s architecture (e.g., type of layer in
a DNN) or output (e.g., labeling strategy). Such an “Input-Model-Output” categorization
is inspired by the “Input–Process–Output” (IPO) theoretical framework (Hackman and
Morris, 1975) for conceptualizing teams in Social Sciences and its subsequent enhance-
ments (e.g., Kozlowski et al., 1999; Ilgen et al., 2005). In the IPO framework, the input
refers to any antecedent that may influence the group, directly or indirectly, the process
(here, cohesion), is an activity that mediates the relationships between the inputs and the
group’s outcomes, while the outputs are the consequences of the group’s actions (Forsyth,
2012). The parallel with our categorization is straightforward: inputs correspond to the
features, model refers to the computational model architecture, and outputs are related
to the purpose of the model (e.g., predicting cohesion for a specific dimension). Such a
categorization highlights the state of the literature on the automated analysis of cohesion
regarding each research axis. In addition, we also suggest new approaches to computa-
tionally address such a complex emergent state (cf. Chapter 5 and Chapter 6).

With this contribution, we aim to provide a structured way to comprehend the ex-
isting literature, highlighting the open challenges of automatically analyzing cohesion. It
also helps appreciating the novelties introduced by our computational models of cohesion.

Second contribution: Multimodal dataset for the automated cohesion analysis.

Facing a lack of publicly available data specifically designed for the automated analysis of
cohesion, we collected GAME-ON, a multimodal dataset that contains more than 11 hours
of audio, video, and motion capture data of 17 groups of friends interacting in the context
of an escape game. The escape game was thought to elicit variations of the Social and Task
dimensions of cohesion across five tasks that require different skills. Before and after each
task, a cohesion questionnaire (i.e., the GEQ, Carron et al., 1985) as well as questionnaires
related to other group processes (e.g., leadership, emotion) were administered to each
group member. In addition, annotations of cohesion were collected afterward by external
annotators watching the recordings of a group. The dataset is presented in Chapter 3.

In this Thesis, features were extracted from the GAME-ON dataset (cf. Chapter 4),
and the labels used to train our computational models of cohesion were computed from
the self-assessments of cohesion (cf. Chapter 5) as well as from the self-assessments of
emotion and leadership (cf. Chapter 6). The designs of the computational models were
also directly impacted by the set-up of the escape game. Architectures are, indeed, de-
signed for predicting, within the same model, the Social and/or Task cohesion dynamics,
for each of the five tasks of the escape game. The motivation of GAME-ON is to provide
the scientific community with an asset for studying cohesion and its relationships with
other group processes.
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Third contribution: Design and implementation of computational models of cohesion.

Previous work on the automated analysis of cohesion (e.g., Hung and Gatica-Perez, 2010;
Nanninga et al., 2017) either focused on predicting cohesion as a whole, without distin-
guishing between its dimensions (e.g., Hung and Gatica-Perez, 2010; Ghosh et al., 2022),
or on designing models for predicting only a specific dimension (e.g., Nanninga et al.,
2017). In both cases, they did not explore the interplay between its dimensions over time,
nor how other group processes such as leadership could impact each dimension. Further-
more, as cohesion develops over time, more effort is needed to capture the dynamics of
such an affective emergent state. Finally, existing computational studies rely on external
assessments of cohesion to train their models. While differences in the perception of co-
hesion exist between both self- and external assessments (Vinciarelli and Mohammadi,
2014), it remains to be seen how these could impact computational models of cohesion.

Following the four research axes mentioned in Section 1.2, we took inspiration from
Social Sciences’ theories and insights on small groups interactions and cohesion to design
various computational models of cohesion to answer RQ1 and RQ2. In Chapter 5 and
Chapter 6, we introduce a collection of computational models of cohesion. Each model
addresses at least one of the research axes and implement approaches with various degree
of complexity. Performances of the models are compared and discussed, providing us
elements of answer for each SQR.

The following references are the work accepted and published during the Thesis.

Journals

• Maman, Ceccaldi, Lehmann-Willenbrock, Likforman-Sulem, Chetouani, Volpe,
and Varni, 2020, GAME-ON: A Multimodal Dataset for Cohesion and Group Anal-
ysis. IEEE Access.

Conferences

• Maman, Volpe, and Varni, 2022, Training Computational Models of Group Pro-
cesses without Groundtruth: the Self- vs External Assessment’s Dilemma. Inter-
national Conference on Multimodal Interaction (ICMI) (Late-Breaking Results)
- Accepted.

• Maman, Likforman-Sulem, Chetouani, and Varni, 2021b, Exploiting the Interplay
between Social and Task Dimensions of Cohesion to Predict its Dynamics Lever-
aging Social Sciences. ICMI - Best Paper award.

• Maman, Chetouani, Likforman-Sulem, and Varni, 2021a, Using Valence Emotion
to Predict Group Cohesion’s Dynamics: Top-down and Bottom-up Approaches.
International Conference on Affective Computing & Intelligent Interaction
(ACII).

• Maman, 2020, Multimodal Groups’ Analysis for Automated Cohesion Estimation.
ICMI (Doctoral Consortium).
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Workshops

• Sabry, Maman, and Varni, 2021, An Exploratory Computational Study on the Effect
of Emergent Leadership on Social and Task Cohesion. Insights on Group & Team
Dynamics (IGTD) at ICMI.

• Walocha, Maman, Chetouani, and Varni, 2020, Modeling Dynamics of Task and
Social Cohesion from the Group Perspective Using Nonverbal Motion Capture-
based Features. IGTD at ICMI.

• Maman and Varni, 2020, GRACE : Un projet portant sur l’étude automatique de
la cohésion dans les petits groupes d’humains. Workshop sur les Affects, Com-
pagnons artificiels et Interactions (WACAI).

1.4 Organization of the Thesis

This Thesis is organized in seven Chapters, including this Introduction. In Chapter 2, we
introduce the theoretical background on emergent states and cohesion. Based on the theo-
retical foundations of cohesion, we defined four research axes for the automated analysis
of cohesion. These axes helped us organizing the related work as well as highlighting the
contributions of this Thesis.

In Chapter 3, we review the existing datasets used in Social Signal Processing and
Affective Computing research domains to study small groups interaction and we present
GAME-ON, a multimodal dataset specifically designed for the automated study of cohe-
sion. Details about the data collection process are given followed by an analysis of the
cohesion questionnaires.

Chapter 4 is devoted to the description of the features that we extracted and used in
every computational model of cohesion presented in this Thesis. First, we briefly review
the important automatically extracted features in the automated group interaction analysis.
Then, we justify and give computational details of each feature extracted.

Chapter 5 presents our models’ evaluation and comparison procedures as well as all
the computational models developed following the research axes presented in our struc-
tured survey. Models are compared between each other according to their characteristics
and novelties introduced.

In Chapter 6, we detail the various approaches that we implemented to integrate the
links between cohesion and group emotion and leadership, respectively.

Finally, Chapter 7 summarizes the contributions of our work as well as its limitations
and suggests some perspectives to improve it in short and long-term perspectives.
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Background and Related Work
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C OHESION is a group process that has been extensively studied since the 1920s
and that is still being investigated through the lens of new group development
theories. It is one of the most studied emergent state (Rosh et al., 2012) -
i.e., a social process that results from the micro-level affective, behavioral,

and cognitive interactions among group members (e.g., Marks et al., 2001) - due to its
influence on desirable group outcomes such as group effectiveness and performance.

In this Chapter, we introduce the research domains in which this Thesis is placed and
we describe the main theories in Social Sciences about emergent states and cohesion in
particular. Based on such a review, we identified four research axes for the development
of computational models of cohesion. Then, we present the computational studies that
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are related to the automated analysis of cohesion from nonverbal features and we cluster
them according to the research axes previously defined and the level at which it operates
(i.e., input, model, or output of the computational model). Such an organization helps
identify what are the axes that are under-investigated from a computational point of view,
hence, guiding the design of new approaches.

In this Chapter, I did all the work, including the choice of the four research axes and
the design of the new approaches introduced in the structured survey.

2.1 Introduction

Understanding humans is a complex task that fascinates and engages scholars in dis-
ciplines ranging from Social Sciences (e.g., Psychology) to Computer Sciences (e.g.,
Human-Centered Computing). In the last 20 years, the computing community shifted
from a computer-centered to a more human-centered vision of computing (Pantic et al.,
2007, 2008) with the aim of providing new methods and tools to endow machines with
social and affective intelligence (Picard, 1999; Pentland, 2007; Vinciarelli et al., 2008).
Nowadays, two growing and active interdisciplinary research domains embrace such a
vision. On one hand, Affective Computing (AC) aims to develop systems and devices
that can recognize, interpret, process, and simulate human emotions, affect, and moods
as humans would, by relying on their senses to assess each other’s communicative and
affective states (Picard, 2000). AC is, indeed, more focused on providing affective in-
telligence to machines (see Picard, 1999, 2000, 2003; Tao and Tan, 2005; Zeng et al.,
2008; Calvo et al., 2015; Cambria et al., 2017, for various reviews). On the other hand,
Social Signal Processing (SSP) aims to provide machines the ability to integrate and sup-
port human-human interactions and embody natural modes of human communication for
interacting with their users (Vinciarelli et al., 2011). To achieve such a goal, machines
should ultimately model, analyze and synthesize behavior in social interactions. Thus,
SSP is more focus on the social intelligence (see Pentland, 2007; Vinciarelli et al., 2008,
2009a,b, 2011; Salah et al., 2011; Pantic et al., 2011; Pantic and Vinciarelli, 2014; Gunes
and Hung, 2015; Burgoon et al., 2017, for the various challenges and applications of SSP).

Initially, these research domains focused on individuals. Recently, a particular empha-
sis is given to the study of groups. In fact, group affect plays an important role in group
dynamics (Waller et al., 2016) as it potentially leads to the emergence of group processes
such as cohesion (Allen et al., 2021). Such a shift towards groups unlocks a broad new
range of applications that encompass, but are not limited to, smart surveillance, ambient
intelligence, social robotics, human-computer interfaces, virtual agents, entertainment,
education, social skills training and so on (Pantic et al., 2011; Salah et al., 2011).

Automatically studying groups and their processes, however, entails both technologi-
cal and social difficulties due to the high diversity of groups and the complexity of mod-
eling human interactions and their evolution over time. For example, Salah et al. (2011)
identified the fact that numerous definitions, theoretical models, and frameworks exist for
a same group process, as one of the major issues for the development of more robust com-
putational models. Thus, collaborations with other disciplines (e.g., Psychology) should
be considered at each step of the study and, in particular, for automatically studying emer-
gent states such as cohesion. Emergent states are social processes that result from the
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micro-level affective, behavioral, and cognitive interactions among group members (e.g.,
Marks et al., 2001). Some of these states are multidimensional making their automated
analysis even more complex, hence, potentially explaining why emergent states remain
under-investigated, despite their important role in group dynamics.

The focus of this Thesis is on the automated analysis of cohesion, a multidimensional
group affective emergent state, in small groups. Thus, our research lies at the intersection
of the AC and SSP research domains and requires a multidisciplinary approach. In this
regard, it is necessary, at first, to accurately define what are emergent states and cohesion
in particular.

2.2 Background

2.2.1 Emergent States

The term emergent state was first coined by Marks et al. (2001). In their seminal article,
they first differentiated group processes from group emergent states. Group processes
describe interdependent group activities that lead group members to pursue their goals,
while emergent states express cognitive, motivational, and affective states of groups.
Thus, emergent states differ from group processes as they do not describe the nature
of the group members’ interactions. Such a characterization of emergent states builds
upon Klein and Kozlowski (2000)’s work stating that a “phenomenon is emergent when
it originates in the cognitive, affect, behaviors, or other characteristics of individuals, is
amplified by their interactions and manifests as a higher level, collective phenomenon”.
Furthermore, Marks et al. (2001) add that emergent states are “dynamic in nature and
vary as function of team context, inputs, processes, and outcomes”. Following these def-
initions, emergent states were first clustered into three families (Kozlowski and Ilgen,
2006; Grossman et al., 2017). Cognitive emergent states are related to the management of
the group’s collective knowledge; behavioral emergent states concern the activities and
the interactions among group members; affective emergent states deal with the relation-
ships among group members and their emotional responses. Recently, Rapp et al. (2021)
provided a review of the literature on emergent states over the past 20 years. Building
upon Marks et al. (2001) categories of emergent states, they introduce a new category,
i.e., the Motivational emergent states, and suggest that some emergent states can blend
into two or more categories.

In detail, the cognitive emergent states concern group members beliefs or thoughts
regarding a specific factor. It includes, for example, constructs related to team cogni-
tion (i.e., the manner in which knowledge for group functioning is mentally organized,
represented, and distributed within a team, DeChurch and Mesmer-Magnus, 2010), and
team climates (i.e., the group members’ perceptions of norms, attitudes, and expectations
perceived to operate within a specific context, Schneider, 1990). Shared mental mod-
els (i.e., a shared understanding of the task that is to be performed and of the involved
teamwork required, Converse et al., 1993) and transactive memory systems (i.e., a group-
level knowledge sharing and memory system in which group members share responsibil-
ity for encoding, storing, and retrieving of information from different knowledge areas,
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and have a shared awareness about each member’s knowledge responsibilities, Wegner,
1987), are examples of team cognition group processes.

Behavioral emergent states involve what team members do, that is, the activities and
interactions primarily focused on accomplishing task objectives (Kozlowski and Ilgen,
2006). According to Grossman et al. (2017), transition, action, and interpersonal pro-
cesses are categorized as behavioral emergent states. Marks et al. (2001) define transition
processes as “periods of time when teams focus primarily on evaluation and/or planning
activities to guide their accomplishment of a team goal or objective”, whereas action pro-
cesses involve “periods of time when teams conduct activities leading directly to goal
accomplishment”. Finally, interpersonal processes are described as “processes teams use
to manage interpersonal relationships”. Team reflexivity (i.e., the extent to which group
members overtly reflect upon the group’s objectives, strategies, and processes, and adapt
them to current or anticipated endogenous or environmental circumstance, West, 1996),
coordination processes (i.e., processes that involve orchestrating the sequence and timing
of interdependent actions, Marks et al., 2001) and conflict management are examples of
transition, action and interpersonal processes, respectively.

Affective emergent states concern group members’ feelings, attitudes, and emotions.
Among the many group processes classified as affective emergent states (see Rapp et al.,
2021, for a review), psychological safety and cohesion are the two most investigated. Psy-
chological safety concerns beliefs that the group is safe for interpersonal risk-taking (Ed-
mondson and Lei, 2014). Cohesion refers to the tendency of a group to stick together
to pursue goals and/or affective needs (Carron et al., 1985). Various definitions and
theoretical frameworks, however, exist (e.g., Festinger et al., 1950; Dion, 2000; Severt
and Estrada, 2015) defining cohesion with a various number of dimensions (i.e., from
two to five), making it difficult to compare results and insights between studies. Cohe-
sion remains one of the most studied emergent states due to its relationships with other
group processes (e.g., group emotion and leadership). More importantly, scholars in So-
cial Sciences provided evidence linking cohesion to a broad range of positive outcomes
such as team performance (Gully et al., 2012; Levi, 2001), effectiveness (Tekleab et al.,
2009), and creativity (Zhang, 2016), stimulating researchers to investigate such an affec-
tive emergent state through its multiple dimensions.

Motivational emergent states concern group members’ intensity, direction, and regu-
lation of effort toward task accomplishment. It includes processes such as team potency
(i.e., beliefs regarding general team ability) and team efficacy (i.e., beliefs about task-
specific team ability).

One of the most dominant theoretical frameworks for conceptualizing teams and group
processes is the “Input–Process–Output” (IPO) framework, developed by Hackman and
Morris (1975). In this framework, the input refers to any antecedent that may influence
the group, directly or indirectly, the process, is an activity that mediates the relationships
between the inputs and the group’s outcomes, while the outputs are the consequences of
the group’s actions (Forsyth, 2012). Kozlowski et al. (1999) and Ilgen et al. (2005) also
enhanced the IPO framework by incorporating an iterative feedback loop to take into ac-
count the influences of the actions taken by the group members. In fact, the outputs of
a group’s actions can provide the input for their next action. IPO remains, to the best of
our knowledge, the theoretical framework of reference for studying emergent states and
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is also applied to address various types of groups such as virtual groups (Webster and
Staples, 2006; Hoch and Kozlowski, 2014; Dulebohn and Hoch, 2017).

2.2.2 What Is Cohesion?
Cohesion, derived from the Latin word cohaesus meaning “staying together”, is one of the
most studied emergent states in Social Sciences (LePine et al., 2008; Rosh et al., 2012).
Since the early 1920s, it has been extensively studied through the lens of various group
dynamics theories (e.g., Schneider and Mcdougall, 1921; Moreno, 1934) and because
of its relationship with group performance (e.g., Bird et al., 1980; Spink, 1990; Mullen
and Copper, 1994). Multiple definitions, conceptual models, and theoretical frameworks,
however, exist, reflecting the complexity of such a group process (see Buton et al., 2006,
for a review of the early works on cohesion). Initially defined as a unidimensional pro-
cess, scholars in Social Sciences rapidly adopted a multidimensional conceptualization of
cohesion without necessarily agreeing on the number of dimensions and their functions.
The plethora of definitions, conceptual models, and theoretical frameworks of cohesion
that emerged, ultimately slowed the comprehension of such a complex process and lim-
ited the generalization of the results. Scholars in Social Sciences, however, agreed on
two distinct but interrelated dimensions of cohesion, i.e., the Social and the Task, as they
play an important role in group interactions. Depending on many factors (e.g., relation-
ships among group members, size of the group), one dimension might be predominant
and impact the development of the other over time. Multiple group development theories
accounted for the emergence and the interplay of these dimensions but, again, provided
opposite findings.

2.2.2.1 From Unidimensional to Multidimensional Definitions of Cohesion

In the early 1940s, Lewin (1939) laid the foundation for the concept of group cohesion,
under the framework of the field theory. Such a theory examines patterns of interaction
between the individuals and their total field, or environment. He considered cohesion (or
the willingness to stick together) as an essential property of groups that depends on the
group size, organization, and intimacy. He defined it as the set of forces keeping members
together, including both the positive forces of attraction and the negative forces of repul-
sion. Building on their work, Festinger et al. (1950) define groups as a set of connections
(i.e., friendship bonds) between group members and extended Lewin’s definition of co-
hesion, defining it as the “total field of forces causing members to remain in the group”.
These forces are related to (1) the individual attraction to the other group members, rely-
ing on the need to belong to a group, (2) the operating forces, corresponding to the ones
related to the group activities, and (3) the group prestige, referring to the group members
pride of being part of the group. Such a categorization of forces highlights that cohesion
was already understood as a multidimensional construct. Due to the difficulties to control
and measure the impact of each force, scholars in Social Sciences, however, continued
to consider cohesion as a unidimensional construct. Later, researchers started to focus
either on the forces related to the social aspects of cohesion (e.g., Schachter et al., 1951;
Lott and Lott, 1965) or on those related to the task aspects of cohesion (e.g., Back, 1951;
Van Bergen and Koekebakker, 1959). These studies had a relevant impact on the devel-
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opment of multidimensional models and frameworks of cohesion. In fact, these forces
became two distinct dimensions, namely Social cohesion, and Task cohesion. Figure 2.1
shows a timeline of the main studies defining cohesion as unidimensional.

Figure 2.1: Timeline of the main studies defining cohesion as unidimensional, from the
1940s to the 1970s.

2.2.2.2 Multidimensional Models and Frameworks of Cohesion

Since the 1980s, the idea that cohesion is a multidimensional construct is well accepted
and many scholars in Social Sciences introduced multidimensional definitions (e.g., Bollen
and Hoyle, 1990; Dion, 2000) and models (e.g., Carron et al., 1985; Hogg and Hardie,
1991; Cota et al., 1995; Bliese and Halverson, 1996) of cohesion, designed for study-
ing such an affective emergent state in different contexts (e.g., military, sport). Most of
these definitions and models are bi-dimensional and suggest multiple ways to define cohe-
sion. For example, Bollen and Hoyle (1990)’s definition as well as the models introduced
by Hogg and Hardie (1991) and Bliese and Halverson (1996), focus on the social aspects
of cohesion and categorize various types of attraction (e.g., feelings towards other group
members, sense of belonging). Based on previous works indicating the need to incorpo-
rate a Task dimension (e.g., Festinger et al., 1950; Hersey and Blanchard, 1969) and to
distinguish individual and group levels at which cohesion can emerge (e.g., Van Bergen
and Koekebakker, 1959; Hagstrom and Selvin, 1965), Carron et al. (1985) introduced a
model to study groups in sport teams (see Figure 2.2). This model grounds on a defi-
nition of cohesion that considers such an emergent state as a dynamic process that can
be reflected by the tendency of a group to stick together to pursue goals and/or affective
needs. This model comprises two major dimensions: Individual attraction to the group
and Group integration. Individual attraction to the group represents all the reasons that
would motivate a group member to remain in the group, while Group integration repre-
sents the degree of unification of the group. Each one of these dimensions can manifest
through the Task and Social dimensions. The Task dimension relates to the degree of
commitment to group tasks and goals while the Social dimension relates to the relation-
ships and friendships between group members. This model was adopted by many scholars
in Social Sciences as the reference model. Other studies, however, questioned the ability
of Carron’s model to generalize to interactions that are outside of a sport context (e.g.,
Cota et al., 1995; Dion, 2000) and advised designing multidimensional frameworks that
consider Primary dimensions that are applicable to most groups and Secondary dimen-
sions that are able to adapt to specific contexts and groups. For example, Dion (2000),
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Figure 2.2: Model of cohesion developed by Carron et al. (1985). It is composed of two
dimensions (Individual attraction to the group and Group integration) that, in turn, are
expressed in the Social and Task dimensions.

suggested that the Social and Task dimensions, the sense of belonging, and vertical co-
hesion (i.e., in the context of hierarchical relationships, it refers to the subordinates’ per-
ceptions of their leaders’ competence and considerateness) were the Primary dimensions
while valued roles, as identified by Yukelson et al. (1984), and risk-taking were exam-
ples of Secondary dimensions. Despite the disarray in the number of dimensions and the
functions of cohesion, scholars in Social Sciences always agreed on the Social and Task
dimensions of cohesion.

More recently, Severt and Estrada (2015) proposed an integrative framework taking
into account Carron’s model and other researchers’ ideas and improvements (i.e., Griffith,
1988; Bollen and Hoyle, 1990; Dion, 2000; Beal et al., 2003). This framework posits
that cohesion can be categorized by two main functions, an Affective function and an
Instrumental function. Figure 2.3 summarizes their framework.

Figure 2.3: Multidimensional framework of cohesion developed by Severt and Estrada
(2015). It is composed of two functional properties (i.e., Affective and Instrumental).
Each property has two dimensions, which are also divided into two levels (i.e., horizontal
and vertical) depending on the hierarchical relationships that may exist in the group.

The Affective function of cohesion refers to all the aspects that highlight the emotional
impact on a group member and, by extension, the group as a whole (e.g., behaviors or
elements of interaction such as cooperation or exchange). Severt and Estrada divided it
into two dimensions that they refer to as facets. First, the Interpersonal dimension lies
in how much one likes, dislikes, or hates the other group members. It can be viewed
as a force acting between people that tends to draw them together and to resist their
separation. The second one, the Group pride dimension, results from a deep sense of
belonging to a group as a whole. It creates a sense of community which strengthens the
bonds of unity. A group member may be attracted to the group because being part of
it is viewed as an honor (Back, 1951). This dimension emphasizes the importance that
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members place on identifying themselves to the group and being part of it (Beal et al.,
2003). Friendship bonds and the desire to identify with a group are often signals of the
emergence of cohesion through its affective dimensions. A group of coworkers going
out for an event outside of work hours is an example of the emergence of interpersonal
cohesion whilst observing group members wearing group t-shirts is an example of group
pride cohesion.

The Instrumental function of cohesion refers to “those aspects that highlight the
goal- and task-based activities of the group” (Severt and Estrada, 2015). Following Katz
(1960)’s statement about the instrumental function of cohesion, Severt and Estrada (2015)
suggest that it is the instrumental function of cohesion that “keeps the group intact so that
it can achieve the set goals of the group, all the while maximizing the rewards gained
from achieving those goals, and minimizing penalties or losses in the process”. Within
the Instrumental function of cohesion, they distinguish between Social and Task cohesion.

The Social dimension refers to the social bonds between group members that are
bound by the group’s working relationship. It might be counterintuitive to categorize So-
cial cohesion as an instrumental function, but social bonds can indeed serve the group’s
goal. The higher Social cohesion will be in a group, the more its members will value the
relationships and friendships that the group provides (Lott and Lott, 1965), resulting in
a positive climate where group members engage in high-quality social working relation-
ships. An example of Social cohesion is when group members play board games together
during their break.

Task cohesion relates to the degree of commitment to group tasks and goals. It is
implied that group members need to share a sufficient level of confidence in the task(s)
realization. An example of task cohesion is when a leader supports another group member
by creating conditions that will ease the resolution of the task.

For each dimension of the two functional properties of cohesion (i.e., Affective and
Instrumental), two levels can be distinguished according to hierarchy differences among
members: Horizontal and Vertical. Horizontal cohesion concerns relations among group
members of the same authority level, whereas Vertical cohesion implies hierarchy and
refers to the relations between a member of authority and a subordinate within the group
context. It is important to differentiate these levels as cohesion can emerge from relation-
ships among various types of groups and group members and across the entirety of the
group’s hierarchy. Cohesion also manifests differently according to the dimension and
level of measurement. Figure 2.4 shows a timeline of the main studies defining cohesion
as a multidimensional construct.

Nowadays, more and more scholars in Social Sciences include and consider autonomous
systems (e.g., robots) as a group member. This is one of the reasons that could explain
the recent development of new theoretical frameworks designed for studying cohesion
in hybrid groups composed of humans and robots (e.g., Abrams and der Pütten, 2020;
Lakhmani et al., 2022). In particular, Abrams and der Pütten (2020) introduce the In-
group identification (I), Cohesion (C), and Entitativity (E) conceptual framework as a
theoretical foundation for group dynamics research in Human-Robot Interaction (HRI).
Such a framework is based on the Social and Task dimensions following Carron et al.
(1985)’s model and has the particularity to consider cohesion at individual and at group
levels while integrating the perception of group unity with other members, including the
robots (i.e., “Entitativity” from an outside observer perspective and “Ingroup identifica-
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Figure 2.4: Timeline of the main studies defining cohesion as multidimensional construct,
from the 1980s to nowadays.

tion” from an inside member perspective). While the ICE framework focuses on existing
dimensions (i.e., Social and Task cohesion), Lakhmani et al. (2022) completely redefine
a set of dimensions, subdimensions, and factors of cohesion based on the existing Social
Science literature. They also introduce a new dimension (i.e., team resilience) and factor
(i.e., complementarity) that are specific for studying hybrid teams composed of both hu-
mans and robots or virtual agents. Figure 2.5 shows an overview of this framework. It
is composed of three major dimensions: Functions of cohesion, Directions of cohesion
and Team resilience. Each dimension contains sub-dimensions (e.g., Interpersonal) and
relevant factors such as Morale (Berg et al., 2021).

Figure 2.5: Framework of cohesion developed by Lakhmani et al. (2022). Cohesion is
here defined into three dimensions (i.e., Functions of cohesion, Directions of cohesion
and Team resilience. Some of these dimensions are composed of sub-dimensions that
are associated with relevant factors (e.g., the Interpersonnal dimension and its Morale
relevant factor).

Even if these frameworks are very specific to HRI research (i.e., they were specifically
designed to study mixed teams composed of robots and/or virtual agents), they highlight
the complexity of defining a universal framework of cohesion that adapts to various types
of groups and contexts.
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2.2.3 The Temporal Nature of Cohesion

Cohesion is an affective emergent state. Therefore, by definition, it develops over time
through the group members’ interactions. While scholars in Social Sciences agree on the
temporal nature of cohesion, there is a lack of study explicitly addressing it (Coultas et al.,
2014; Salas et al., 2015; Grossman et al., 2015). Groups are, indeed, dynamic entities,
and cohesion is likely to change and operate differently as various group processes and
situational variables unfold over time (Grossman et al., 2015). Many factors could, in
fact, impact the emergence and development of cohesion (and its dimensions). One of
the main factors is the developmental phase of the group. For example, in newly formed
groups, cohesion may rapidly emerge but is highly volatile (Mullen and Copper, 1994),
especially for its Social dimension (Siebold, 2006). Such an observation led to the notion
of swift cohesion (Coultas et al., 2014; Salas et al., 2015). On the contrary, in groups with
longer tenure, cohesion is more stable. In this case, variations of cohesion might occur
depending on the task that is being performed. These variations might also be different for
each dimension. For example, Bartone and Adler (1999) looked at cohesion in deployed
military units and showed that cohesion emerged in an inverted-U function, with low
levels of cohesion pre-deployment, high levels mid-deployment, and a leveling off toward
the end of the deployment cycle. Later, Siebold (2006) corroborated these findings and
suggested that this U-shape pattern of cohesion was more prevalent for Social cohesion
while an inverted U-shape pattern occurred more prominently for Task cohesion.

That being said, it appears crucial to incorporate time into computational models of
cohesion. It is, indeed, highly recommended in various studies highlighting the difficulties
of measuring such a process (e.g., Coultas et al., 2014; Salas et al., 2015; Grossman et al.,
2015). Furthermore, modeling dynamics of emergent states was also identified as one of
the key challenges of SSP according to Brunet et al. (2012). Thus, addressing the temporal
nature of cohesion corresponds to our first research axis (RA1).

2.2.4 Cohesion, a Group Emergent State

Automatically studying groups and their dynamics is a complex task that has received
little attention compared to individual processes. This is primarily due to the many non-
linear interactions that occur between group members (Gilbert, 2004), that dynamically
affect individuals’ behaviors. Also, it comes from the fact that group processes are not
necessarily well defined from a Social Sciences point of view (i.e., multiple definitions
exist). This is the case for cohesion. It is, indeed, a group emergent state that unfolds
through its members’ interactions.

The two main streams for considering groups processes, and cohesion by extension,
are the Top-down and Bottom-up approaches (Barsade and Gibson, 1998). The first one
focuses on the group as a whole and is close to the group conception developed by Schnei-
der and Mcdougall (1921). This approach is based on the assumption that the whole is
greater than the sum of its parts, hence, it considers the group processes such as cohesion,
as responsible for the influences on the members’ feelings and behavior. Following this
approach, scholars in Social Sciences characterized group processes as (1) forces which
shape individual emotional response (e.g., Le Bon, 1897), (2) social norms (e.g., Gibson,
1997), (3) the interpersonal glue that keeps groups together (e.g., Festinger et al., 1950)
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and (4) a display of group’s maturity and development (e.g., Bales and Strodtbeck, 1951).
Oppositely, the Bottom-up approach views group processes as the sum of its individu-
als. This approach is derived from the “individualist” view of group processes exposed
by Moreno (1934). Such a view led researchers to examine the group through a variety
of compositional perspectives such as the mean of the group’s members, the degree of
variance of the observed process within the group, and the influence of the most extreme
members on the others. There is, however, an open debate on defining the best approach
since both bring different characterizations of group processes.

As cohesion is a group emergent state, we believe it is worth investigating it through
the group as a whole as well as from its individuals. Hence, group modeling constitutes
one of our research axes (i.e., RA2) for developing computational models of cohesion.

2.2.5 The Social and Task Cohesion Interplay
As previously mentioned, traditional definitions, theoretical models, and frameworks of
cohesion agree on the importance of the Social and Task dimensions of cohesion in group
interactions. Although scholars in Social Sciences clearly state that cohesion’s dimen-
sions interplay somehow and somewhere over time, some of them argue that Social co-
hesion emerges first and impacts Task cohesion (e.g., Tuckman, 1965; Grossman et al.,
2015). Other ones affirm that, especially at an early stage of group formation, Task co-
hesion might emerge before Social cohesion, and it could be seen as a shared experience
auspicious to group bonding (e.g., Kozlowski et al., 1999). These two opposite points of
view might hold depending on many factors (e.g., the nature of the group members and
the group’s goals). In their work, Severt and Estrada (2015), indeed, highlight that not
every group exploits each dimension of cohesion. Moreover, Grossman et al. (2015) state
that once Social cohesion appeared, followed by Task cohesion, after a while, a dynam-
ical reciprocal adjustment between the two dimensions occurs, at the expense of Social
cohesion. Bartone and Adler (1999) and Siebold (2006) also provide evidences in that
direction (i.e., Task cohesion increases while Social cohesion decreases). They, however,
add that U- and inverted U-shape patterns are observed for the Social and Task dimen-
sions of cohesion, respectively, over the lifespan of a military group, implying dynamical
adjustments over time. These results highlight that these dimensions have a reciprocal im-
pact on each other, opening a third way to study the interplay between these dimensions.

2.2.5.1 From Social Cohesion to Task Cohesion

Early work by Tuckman (1965) on small groups development suggests that cohesion is
part of the life cycle of a group and that the social aspects of cohesion develop first.
Empirical work confirmed and extended Tuckman’s hypothesis (e.g., Zurcher Jr, 1969;
Runkel et al., 1971) stating that groups go through the stages of “forming”, “storming”,
“norming”, “performing”, and, finally, “adjourning” (Tuckman and Jensen, 1977). Dur-
ing the forming, group members develop social bonds and get to know each other, while,
in the storming, they start learning about each others’ strengths and weaknesses, leading
to the definition of their roles. Such a categorization of the different stages of a group
encourages to consider the Social dimension as a potential driver for the Task dimension.
Moreover, Carron and Brawley (2000) state that all dimensions are not equally present
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across groups and that some dimensions might be more salient depending on the devel-
opmental phase of the group (e.g., a newly formed group vs. a group of friends), and
the specific interaction settings such as a meeting. In addition, the influence of a dimen-
sion is likely to change gradually over time. In their study, they also conclude that, in
particular contexts (e.g., in social groups), Social cohesion would be more salient. Gross-
man et al. (2015) support the predominance of Social cohesion in social groups and argue
that Social cohesion emerges first in a group, and sets the stage for Task cohesion, which
develops later. Lending further support to the notion that Social cohesion breeds Task
cohesion, Severt and Estrada (2015) advanced that Social cohesion facilitates flexible and
constructive relationships in groups and teams, hence, promoting Task cohesion.

2.2.5.2 From Task Cohesion to Social Cohesion

While the path from Social cohesion to Task cohesion may be more intuitive from a de-
velopmental point of view, the other direction (i.e., Task cohesion influencing Social co-
hesion) may also occur in group interactions. Prior theorizing has hinted at the possibility
that Task cohesion might emerge earlier in a group’s developmental trajectory, before
group bonding and relationship formation come into play and create shared experiences
of Social cohesion (Kozlowski et al., 1999). In earlier stages of team development, task
aspects can be more salient than social aspects of a team, which may require an extended
period of interaction (Carron and Brawley, 2000). Empirical work indicates support for
the notion of task aspects promoting subsequent Social cohesion. A study of youth ath-
letes showed that members of task-focused teams report personal enjoyment and friend-
ship development (Balaguer et al., 2003). Similarly, a study of teams of male college ath-
letes showed that a task-involving team climate predicts aspects of Social cohesion (Boyd
et al., 2014). The authors discuss that a task-involving climate can help reduce social bar-
riers, foster interdependence, and trigger positive social interactions, which paves the way
for Social cohesion. While it remains to be seen whether these findings extend to other
types of groups with, for example, a more heterogeneous gender distribution, they high-
light a possible direction of influence from Task cohesion to Social cohesion, as opposed
to previous findings derived from Tuckman’s hypothesis on small groups development.

While opposite points of view emanate from the Social Sciences literature regarding
the way the Social and Task dimensions of cohesion interplay, there is no doubt that such
relationships impact cohesion dynamics. We believe that computational models would
benefit from integrating such an interplay. Thus, this constitutes another research axis
(i.e., RA3).

2.2.6 Relationships between Cohesion and Other Group Processes
Cohesion is one of the most studied emergent state in Social Sciences (Rosh et al., 2012)
as many studies focused on investigating the links between cohesion dimensions and
other group processes such as collective efficacy (e.g., Spink, 1990; Zaccaro et al., 1995;
Paskevich et al., 1999; Estabrooks and Carron, 2000b; Kozub and McDonnell, 2000),
emotions (e.g., Lawler and Yoon, 1996; Barsade and Gibson, 1998; Lawler et al., 2000;
Thye et al., 2002; Zheng et al., 2015) or leadership (e.g., transformational leadership,
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Light Shields et al., 1997; López-Zafra et al., 2008; Callow et al., 2009; Vincer and Loug-
head, 2010; Smith et al., 2013). A takeaway from these studies is that, during an interac-
tion, a group process linked to cohesion could lead to the emergence and development of
cohesion or, oppositely, could result from the emergence and dynamics of cohesion.

Integrating the links between cohesion and group processes related to cohesion into
its computational models appears necessary given their impact on cohesion. Thus, our
fourth research axis (RA4) consists of addressing such an open challenge.

2.3 A Structured Survey for the Automated Analysis of
Cohesion

In this Section, we first introduce the studies addressing the automated detection of co-
hesion. Then, we present how the survey is organized and how the studies fit into it by
presenting the different approaches they explored.

2.3.1 Automated Studies on Cohesion Using Nonverbal Features

Hung and Gatica-Perez (2010) were the first to include both audio and video nonverbal
descriptors to computationally investigate cohesion in a meeting context using the AMI
dataset (Carletta et al., 2006). They also collected annotations of cohesion provided by
external observers to establish a reference for evaluating automated methods. Even if the
questionnaires used to assess cohesion were based on a multidimensional conceptualiza-
tion of cohesion, the models presented in this study focused on predicting cohesion as a
whole, without distinguishing between its Social and Task dimensions. They extracted
features from audio and video data and, all the features but the ones related to turn-taking
were computed from individuals. Some of the individual features were amalgamated to
reflect their distribution over the group as a whole. Their results showed that using an
SVM classifier, the best performing features to estimate high and low levels of group co-
hesion during meetings were the following: the total pause time between each individual’s
turns during a meeting segment (extracted from the audio), the total visual activity for
each person in the meeting (extracted from the video), and the visual activity during peri-
ods of overlapped speech (extracted from both the audio and video). With these features,
their SVMs reached 90%, 83%, and 82% classification accuracy, respectively. Nanninga
et al. (2017) recently extended this work, integrating pairwise and group descriptors re-
lated to the alignment of para-linguistic speech behavior (e.g., the Mel Frequency Cepstral
Coefficients, speech rate) to study if these could improve estimations of Social and Task
dimensions of cohesion in a meeting setting. They found that such kind of descriptors
outperform the traditional turn-taking-based descriptors (i.e., the ones used in Hung and
Gatica-Perez, 2010), for Task cohesion. With the same experimental setting, they reached
a mean area under the ROC curve (AUC) of 0.64 by combining both types of features as
opposed to an AUC of 0.53 when using turn-taking related features only. The authors also
evaluated the performances of two supervised classification methods (a Gaussian Mixture
Model and a Kernel Density Estimation) fed with nonverbal features combining mimicry-,
synchrony- and turn-taking-related. Results show that these models, in a meeting setting,
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performed well for classifying the Social dimension of cohesion (low or high), for which
they achieved a performance of 0.71 Area under the ROC Curve (AUC). Concerning the
Task dimension of cohesion, they managed to reach a performance of 0.64 AUC. These
results confirm that quantifying mimicry is useful for automatically assessing cohesion,
especially for its Social dimension and suggest that Social cohesion is more clearly ex-
pressed by behaviors in general than Task cohesion. In this study, however, they did not
focus on how the Task and Social dimensions are related to each other over time.

Kantharaju et al. (2020) also investigated cohesion in a meeting context. As in the
previously mentioned studies, they present a multimodal analysis of cohesion using 16
two-minute segments from the AMI dataset. They, however, explored how both verbal
(e.g., dialogue acts) and nonverbal (e.g., laughter duration) features are related to high
and low cohesive segments. Their results indicate that the occurrence of some nonverbal
features (i.e., laughter and interruption) are higher in high cohesive segments and that
verbal features did not have an impact on the level of cohesion by itself. This is in line
with previous works in other group contexts showing that nonverbal communication is a
more powerful predictor of cohesion than verbal behavior (e.g., Kubasova et al., 2019;
Alsulami, 2021).

Lately, Dhall (2019) provided a bench-marking platform to investigate methods on
affect labeled data through the EmotiW challenge. In this challenge, researchers imple-
mented different Deep Neural Networks to predict group cohesion from images (e.g., Zhu
et al., 2019; Wang et al., 2020) taken from the GAF 3.0 dataset (Dhall et al., 2017). For
all the EmotiW-related studies, the aim is to predict a group cohesion score comprised
between zero and three included. Zhu et al. (2019) proposed a hybrid network includ-
ing regression models which are separately trained on face features, skeleton features,
and scene features. Then, they fused each regression value into a final layer predicting
the group cohesion score. They reached a Mean Square Error (MSE) of 0.44, outper-
forming the baseline MSE of 0.50. In their study, Wang et al. (2020) developed a deep
neural network (DNN) architecture that takes both an image and its textual description.
Such an approach aims at picking-up extra information contained in the textual descrip-
tion to improve cohesion prediction. They reach an MSE of 0.47, hence, showing that
their approach is outperforming their baseline (i.e., the same DNN without the image
description).

All of the previously mentioned studies, however, implemented their models without
considering the temporal aspect of cohesion. They, indeed, considered each sample (e.g.,
images, segments of meeting videos) independently. In their longitudinal study (i.e., a
study where the same individuals or groups are repeatedly examined to detect any changes
that might occur over a period of time), Zhang et al. (2018) addressed the temporal nature
of cohesion by studying small groups collaborations during long-duration missions in
confined spaces with the use of sociometric badges. These can be anything placed on a
person or on its phone, that is able to track the person’s movement and activity. In order
to recognize group members’ affect states and group cohesion (i.e., through its Social and
Task dimensions), they collected and analyzed data from a group of six members involved
in a 4-months simulation of a space exploration mission. They defined cohesion detection
as a binary classification problem (negative or positive) and they used features in their
models both from individual members and the group as a whole. Their results show that
Task cohesion can be correctly classified with a high performance of over 0.80 AUC.
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The fact that Task cohesion is well classified (as opposed to previous studies) could be
explained by the task-driven nature of the group. Also, an interesting conclusion from this
study is that quantifying behavior patterns including dyadic interactions and face-to-face
communications is important in assessing the group process. Results are promising and
show the benefits of integrating the temporal nature of cohesion in computational models.
These results, however, concern a quite specific scenario. It remains to be seen whether
they apply to other types of groups (e.g., social groups).

While the aforementioned studies focused on analyzing and predicting cohesion only,
other studies also introduced computational architectures to jointly predict cohesion with
other related processes in order to take advantage of their interplay. Wang et al. (2012),
for example, conducted a study about the joint prediction of leadership and cohesion
based on verbal features in multiparty dialogues and broadcast conversations in English
and Mandarin. Using AdaBoost algorithm (Freund and Schapire, 1997), they achieved
F1-scores ranging from 0.73 to 0.95 for leader detection and around 0.80 F1-score for
group cohesion detection across multiple datasets. Except for this pioneering study, it
is only very recently that researchers in Computer Sciences started again exploring the
relationships between cohesion and other group processes.

Fang and Achard (2018) attempted to link specific audio and video nonverbal fea-
tures as well as personality traits to cohesion using segments of meeting interactions from
the ELEA dataset (Sanchez-Cortes et al., 2011b). They treated the problem of cohesion
prediction as a binary classification problem and clustered their 2-minute long videos into
high or low levels of cohesion. They used a Ridge Regression (Hastie et al., 2009) to clas-
sify each video and showed that speech turn and variation of speech energy are related to
cohesion and that the Big Five Personality Trait (John, 1990) “Agreeableness”, is highly
correlated to cohesion compared to other personality traits. This study, however, does
not explicitly integrate the relationships between cohesion and these personality traits in
their models. Furthermore, interactions from this dataset are scripted, hence, conclusions
should be interpreted with care as they might differ in a natural unscripted interaction
setting.

As part of the EmotiW challenge (Dhall, 2019), researchers implemented various
methods to jointly predict emotion and cohesion’s level in images (e.g., Guo et al., 2019;
Xuan Dang et al., 2019; Gavrikov and Savchenko, 2020; Ghosh et al., 2022; Zou et al.,
2020; Tien et al., 2021) and videos (e.g., Sharma et al., 2019), using DNNs and the same
experimental settings (see Dhall, 2019, for more details). Thus, results are comparable
across the following studies. In their work, Ghosh et al. (2022) introduced a DNN to
jointly predict cohesion and emotion that uses the whole image as input and that is com-
posed of a pre-trained Inception V3 (Szegedy et al., 2016) model. It classifies cohesion as
a regression task (between zero and three) and emotion as a 3-classes classification (posi-
tive, negative, neutral). Results show that, when using group cohesion as a secondary task,
it helps increase the performance for group emotion prediction. This study sets the base-
line for the other works that attempted to jointly predict both group emotion and cohesion.
In fact, Guo et al. (2019) jointly trained the group cohesion prediction task with the group
emotion recognition task using a multi-task learning approach. They tested their models
with different visual features (i.e., extracting only faces or only bodies from images or
the whole image, respectively). They also designed two different losses (i.e., a rank loss
and an hourglass loss) and achieved an MSE of 0.44 using the whole images. Similarly,

23



CHAPTER 2 – BACKGROUND AND RELATED WORK

Zou et al. (2020), presented a hybrid deep learning network for the prediction of group
emotion and level of cohesion from images. They first used a model to classify emotions
according to their valence (positive, neutral, negative) and used the model’s output into
a regression layer to predict the cohesion level (between zero and three). They also im-
plemented a multitask loss to merge the regression task (i.e., the prediction of the level of
cohesion) with the classification task (i.e., emotion prediction). They reached a classifi-
cation accuracy of 74.80% for the prediction of the valence of emotion, and an MSE of
0.70 for their cohesion regression task. Xuan Dang et al. (2019) also designed a custom
loss for predicting group cohesion from images. In order to integrate the influence of
emotion on cohesion, they designed a custom weighted loss. Tien et al. (2021) extended
this study and explained in depth their DNN model. They exploited four types of visual
features: the scene, skeletons, UV coordinates (also known as texture coordinates which
define a map of a 2D image onto a surface in 3D space, Hughes et al., 2014) and faces
from the images, along with convolutional neural networks (CNNs). DNN’s architecture
is composed of one independent branch for each of the visual features and one additional
branch that results from the concatenation of all of the branches except the one extract-
ing faces. Then, the five branches are concatenated into a final layer to predict the group
cohesion score. With their architecture, they managed to reach an MSE of 0.42. Finally,
there is, to the best of our knowledge, only one study that attempts to jointly predict group
emotion and cohesion from videos. Sharma et al. (2019), indeed, designed a multimodal
DNN based on the inception V3 pre-trained model (Szegedy et al., 2016). The videos
used in this study largely differed, for example, in scenarios and poses, making it difficult
for the model to capture the dynamics of group emotion since it was trained on images.
Their model predicts the valence of emotion (i.e., positive, neutral, negative) with 47.50%
accuracy and predicts cohesion with an MSE of 0.80.

While these approaches computationally confirm Social Sciences’ insights regarding
the relationships between cohesion and other persons’ characteristics (e.g., personality
traits), cohesion and leadership as well as cohesion and emotion, they all defined cohesion
without distinguishing between its dimensions. A multidimensional approach would help
advance further our understanding of the way these group processes interplay over time.

2.3.2 Organization of the Survey
Given the relatively small literature on the automated analysis of cohesion, we provide a
structured survey that highlights the various approaches employed to develop computa-
tional models of cohesion. Some of them could also be applied to the automated analysis
of other group processes and emergent states. The survey is organized following the
four research axes identified in the previous Section (i.e., Temporal nature of cohesion,
Interplay between dimensions, Group modeling, and Relationships with other group pro-
cesses). In addition, inspired by the IPO theoretical framework (Hackman and Morris,
1975) and its subsequent enhancements that incorporate iterative feedback loops (e.g.,
Kozlowski et al., 1999; Ilgen et al., 2005), we clustered the approaches according to three
levels: “Input”, “Model” and “Output”. In the IPO theoretical framework, input refers
to the antecedents that could influence the group, directly or indirectly while, in our cat-
egorization, the inputs of a computational model are either the raw data (in the case of
an end-to-end deep neural network) or the extracted features. Process refers to the ac-

24



2.3. A STRUCTURED SURVEY FOR THE AUTOMATED ANALYSIS OF COHESION

tivity that mediates the relationships between the inputs and the group’s outcomes (i.e.,
cohesion). In our categorization, we replaced it with the Model level, which corresponds
to the architecture of the computational model. Finally, in IPO, the outputs are consid-
ered as the “consequences of the group’s actions” (Forsyth, 2012) which, in the context
of a computational model, refer to its purpose (e.g., predicting cohesion for a specific
dimension).

The approaches that are presented in this survey could be applied independently of
the environment in which the interactions take place (e.g., real, virtual, or mixed) and of
the technology from which the signals are extracted (e.g., video, audio, motion capture).
In fact, cohesion has been traditionally automatically investigated in a real-world setting.
With the advent of new technologies and the actual world context (e.g., health crisis),
more and more tools are, however, developed to encourage people to meet and gather
virtually (e.g. virtual and hybrid conferences). Thus, researcher in Computer Sciences,
started investigating emergent states (e.g., Curşeu, 2006; Moustafa and Steed, 2018) and
cohesion in particular (e.g., Torro et al., 2022) in virtual environments as well as col-
laborative systems in mixed environments (see Ens et al., 2019, for a review). While
the social interactions of virtual and mixed groups usually follow the conventions of the
real world (e.g., keeping distances from each other, turning to face the conversation part-
ners), multiple studies (e.g., Axelsson, 2002; Salinäs, 2002) highlight the differences in
the group members’ behavior (e.g., people use fewer gestures, Schroeder, 2002). In ad-
dition, new technologies extended the range of human signals available to capture, with
increasing precision. While the most common data consist of video and audio, human
signals are also captured through devices such as electroencephalogram (EEG) (Soroush
et al., 2017), electrocardiogram (ECG) (Santamaria-Granados et al., 2018), motion cap-
ture (Kapur et al., 2005) and so on. Thus, our survey only provides approaches that
are independent of the environment (i.e., they can be implemented in real, virtual, and
mixed environments) and of the signals extracted. Finally, it is worth mentioning that
such approaches could be complementary. In fact, for each level, multiple approaches to
investigate cohesion through more than one research axis could be applied. Figure 2.6
shows the structure of our survey according to the four research axes and the three levels
at which approaches could be applied (Input, Model, Output). Existing approaches are
classified according to their complexity of integration into a computational model (i.e.,
the darker the color is, the more complex it is). All the approaches in bold are the ones
we implemented in Chapter 5 and Chapter 6.

In the following, each approach employed by the previously mentioned studies is
presented, at each level, and for every research axis. New approaches introduced in this
Thesis are also motivated and detailed.

2.3.3 Approaches Employed at the Input Level

2.3.3.1 Addressing the Temporal Nature of Cohesion (RA1)

At the Input level, time is addressed by choosing the most appropriate segmentation of
the data. This choice depends on the goal of the study, the eventual technical constraints,
or the specific research questions (Lehmann-Willenbrock and Allen, 2018). Such a task
remains, however, complex but crucial to catch the multiple facets of cohesion (Ceccaldi
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Figure 2.6: Structured survey of approaches for the automated analysis of cohesion. We
suggest investigating cohesion at Input, Model and Output levels of the computational
models, following four research axes: Temporal nature (in blue), Interplay between di-
mensions (in green), Group modeling (in purple) and Relationships with other group pro-
cesses (in orange). For each axis, multiple approaches are presented according to their
complexity of integration. Approaches framed in bold are the ones implemented in Chap-
ter 5 and Chapter 6.
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et al., 2019). In fact, many approaches exist to segment the data and we only present the
ones that had been used in the previously mentioned studies or that are promising for the
automated analysis of cohesion.

One of the simplest, but time-efficient approach, consists of extracting the features
on consecutive or overlapped fixed-length windows (i.e., automated segmentation). The
length of the window as well as the duration of the overlap can be similar across all the
modalities or specific to the modalities’ characteristics. Another approach exploits a thin-
slice strategy (Ambady and Rosenthal, 1992). This refers to the process of making very
quick inferences about the individual and/or group processes with a minimal amount of
information. According to Ambady and Rosenthal (1992), fixed-length time windows of
behavior from 2 seconds to 5 minutes are deemed to provide an efficient assessment of
personality, affect, and interpersonal relations. This approach is extensively used in Social
Psychology and is leveraged in some computational studies (e.g., Hung and Gatica-Perez,
2010; Nanninga et al., 2017). These strategies have the advantage of being easily automa-
tized and fast to compute and, in the case of automated segmentation, do not require prior
knowledge of the content of the interaction. They, however, might break the interaction
in the middle of a social signal (e.g., during a turn), leading to a potential loss of mean-
ing. Overlapped windows help reduce such a risk but increase the amount of redundant
information and make the process of integrating time dependencies at Model level harder
due to the fact that the natural time dependencies between two segments no longer exist.

Another approach is to segment the data per relevant features. It implies that every fea-
ture of interest is annotated throughout the whole interaction and that only the segments of
interest are selected. This methodology usually requires a coding scheme. The most popu-
lar one that has been applied for the automated study of cohesion is ACT4Teams (Kauffeld
et al., 2018). It was initially designed for measuring problem-solving dynamics in groups
but has been applied to annotate Social and Task cohesion from audio content (Nan-
ninga et al., 2017). Despite the convenience of being tailored for a specific objective (i.e.,
automatically analyzing cohesion), this approach is time-consuming and often requires
annotators to be trained on the methodology. In a similar vein, another approach con-
sists of segmenting the interaction per event which is, according to Zacks and Tversky
(2001), “a segment of time at a given location, that is conceived by an observer to have
a beginning and an end”. Such an approach leverages the Event Segmentation Theory
(EST) that exploits the innate ability of human beings to parse an ongoing interaction into
meaningful units (Zacks and Swallow, 2007). Such an approach has been used by Cec-
caldi et al. (2019) to explore how it affects external observers’ annotation of Social and
Task cohesion. Their results reflect more variability in cohesion in different interactions
as compared to traditional automatic and continuous types of segmentation and provide
hints to automate this segmentation.

2.3.3.2 Addressing the Group Modeling (RA2)

Concerning RA2, three approaches had been identified at the Input level. The first one,
which is the approach used in most of the computational studies of cohesion using mul-
tiple modalities, consists of aggregating features computed from individuals to produce
group features (e.g., Fang and Achard, 2018; Zhu et al., 2019). In these studies, all the
features extracted from the video were first computed from individuals and then, amal-
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gamated to approximate the distribution of the feature for the group. A more complex
approach consists of computing innate group features (i.e., features that are computed
over the whole group). This is done, for example, for all the turn-taking-related features
in the studies presented by Hung and Gatica-Perez (2010) and Nanninga et al. (2017).
Extracting innate group features from different modalities would help capture social sig-
nals that are induced by individuals’ interaction (e.g., F-formations, Kendon, 1990). Such
innate group features are extracted (see Chapter 4) and used in the computational models
(see Chapter 5 and Chapter 6). Lastly, an approach that addresses both RA2 and RA4 con-
sists of taking into account group members’ characteristics at the Input level by weighting
individual or group features depending on the process studied. For example, the features
of a leader could be amplified to accentuate the differences with its followers. The last
approach is implemented in Chapter 6.

2.3.3.3 Addressing the Interplay between the Social and Task Dimensions (RA3)

To the best of our knowledge, there is no automated study on cohesion interested in the
interplay between cohesion’s dimensions and, in particular, between its Social and Task
dimensions. Hence, when cohesion is considered as a multidimensional process, the same
set of features is used to infer Social and Task cohesion (e.g., Nanninga et al., 2017; Zhang
et al., 2018). While features might contain important information for predicting both di-
mensions (e.g., features related to touch can help communicate task-related information
as well as convey social status and emotions, Saarinen et al., 2021), the Social Sciences
literature suggests that particular behaviors are particularly relevant for studying either
Social or Task cohesion. For example, big overall posture expansion is positively corre-
lated to Social cohesion (Weisfeld and Beresford, 1982) while overlapping of speeches is
usually a sign of engagement in the task (Hilton, 2016). Thus, an approach consisting of
building multiple features sets that either characterize both dimensions or each dimension,
specifically, could help improve predictions for both dimensions. These features sets, in-
deed, could be processed differently at the Model level. How to compose such features
sets could be done by leveraging Social Sciences’ insights or by running post-hoc anal-
ysis on existing trained computational models of cohesion to select the most important
features. The latter approach is addressed in Chapter 5 and requires different techniques
depending on the nature of the model. For example, decision tree algorithms offer im-
portance scores based on the reduction in the criterion used to select split points (e.g.,
Gini or entropy) while techniques based on Shapley values could be used to explain Deep
Learning models (e.g., SHapley Additive exPlanations values, Lundberg and Lee, 2017).

2.3.3.4 Addressing the Relationships with Other Group Processes (RA4)

The approaches following RA4 share some similarities with RA3. Cohesion (and its di-
mensions), indeed, have relationships with other group processes (e.g., group emotion).
Among the existing studies exploiting information from other group processes to predict
cohesion (e.g., Fang and Achard, 2018; Xuan Dang et al., 2019; Ghosh et al., 2022), they
all use the same set of features for both processes, with the exception of Wang et al. (2012)
that distinguished between leadership features and cohesion features. As for studying the
interplay between cohesion’s dimensions, one approach could consist of defining vari-
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ous features sets that are common to all the processes predicted by the model or that are
specific to each process. In that way, this will enable the model to process features differ-
ently depending on its architecture. All of the approaches addressing RA4 at Input level
presented in the structured survey are explored in Chapter 6.

2.3.3.5 Summary

Many approaches could be implemented at Input level. As summarized in Figure 2.7,
the current literature on the automated analysis of cohesion usually employs approaches
that are simpler to integrate into computational models of cohesion. Since automatically
analyzing cohesion is a complex task, empirical analysis will provide more insights into
the most relevant approaches to apply.

At Input level, each research axis, has room for improvement, especially for studying
the interplay between Social and Task cohesion where there are only a few computational
studies that make a distinction between its Social and Task dimensions (e.g., Nanninga
et al., 2017).

Figure 2.7: Overview of the approaches employed at the Input level, according to their
complexity of integration. At this level, most studies apply simple strategies, especially
with respect to the second RA. Only a few, indeed, make a distinction between the Social
and Task dimensions of cohesion. For more details about the approaches, refer to the
corresponding color in Figure 2.6.
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2.3.4 Approaches Employed at the Model Level

2.3.4.1 Addressing the Temporal Nature of Cohesion (RA1)

At the Model level, RA1 has only been addressed by employing a simple approach con-
sisting of processing each segment (e.g., Hung and Gatica-Perez, 2010; Nanninga et al.,
2017) or images (e.g., Zhu et al., 2019; Xuan Dang et al., 2019; Gavrikov and Savchenko,
2020) independently, without integrating the potential time dependencies that exist from
samples of the same interaction. Thus, a first approach consists of integrating these short-
time dependencies between consecutive windows in the model. For example, this can
be addressed through DNNs architectures. Multiple layers such as Gated Recurrent Unit
(GRU), Long short-term memory (LSTM), and Bidirectional Long short-term memory
(Bi-LSTM), indeed, allow to process entire sequences of time series data. In the case
a group performs multiple interactions (e.g., accomplishing multiple tasks), a more ad-
vanced approach involves capturing the long-time dependencies that may exist between
the different interactions by integrating elements from the past (e.g., from the previous
interaction) to give context to the current interaction. The two last approaches are imple-
mented in Chapter 5 and Chapter 6.

2.3.4.2 Addressing the Group Modeling (RA2)

We identified three main approaches at the Model level. The first one, which is currently
applied in all the computational studies of cohesion, consists of processing every feature
together, whether it is computed from the individuals or the group. A more advanced ap-
proach consists of processing individual and group features differently to learn both indi-
vidual and group contributions to the interaction. This could be done in two ways. Firstly,
individual and group features can be processed independently and fused only before the
model’s predictions. Secondly, to account for the relationships between individual and
group manifestations of cohesion, individual features could be first processed to inform
the representation learned from group features. Such approaches are explored in Chap-
ter 5. Another approach that also concerns RA4, consists of considering cohesion (and
other group processes) from a Top-down or Bottom-up approach. Top-down focuses on
the group as a whole. This means that group dynamics influence the feelings and behav-
iors of members of the group. Bottom-up approximates the group as the sum of its parts.
This approach led researchers to examine the group through a variety of compositional
perspectives such as the mean of the group’s members. To the best of our knowledge, only
Ghosh et al. (2022)’s study acknowledges these Top-down and Bottom-up approaches to
define both group emotion and cohesion. There is, however, an open debate on defining
the best approach. As both the Top-down and the Bottom-up approaches bring different
characterizations of group processes such as group emotions, Barsade and Gibson (1998)
recommend exploring methods following both these approaches to have a complete pic-
ture of the process. Literature on cohesion, and group emotion in particular, highlight the
importance to consider them from both individual and group perspectives (Braun et al.,
2021). Both Top-down and Bottom-up approaches are investigated in Chapter 6.
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2.3.4.3 Addressing the Interplay between the Social and Task Dimensions (RA3)

Concerning RA3, the same architecture could be used for predicting each dimension, in-
dependently. This approach is employed in Nanninga et al. (2017) to predict the Social
and Task dimensions of cohesion. In this study, both dimensions are predicted separately,
hence, implying that the relationships between the Social and Task dimensions are not
taken into account. Since only a few computational studies are differentiating between
the Social and the Task dimensions (e.g., Nanninga et al., 2017; Zhang et al., 2018), the
other approaches remain to be explored. The first one consists of processing each dimen-
sion differently (e.g., by using different layers) according to the dimensions’ specifics
(e.g., Social cohesion might require different model parameters). Finally, the design of
the model could be inspired by Social Sciences’ insights on the dynamics of cohesion
in small groups. Various theories on small groups development, indeed, exist (see Sec-
tion 2.2.5.1), hence, opening different ways to integrate the Social and Task interplay
(e.g., Social cohesion helps predict Task cohesion or inversely). All of these approaches
are investigated in Chapter 5 and Chapter 6.

2.3.4.4 Addressing the Relationships with Other Group Processes (RA4)

Relationships with other group processes could be studied through two extra approaches
at the Model level. The first one requires to initially train a model for a specific group
process (e.g., leadership) and to use it within the cohesion model. In that way, the pre-
trained model could be used directly within the computational model architecture to help
learning contextual information. This approach implies, however, having computational
resources to pre-train a model on a specific process of interest. This approach is imple-
mented in Chapter 6. The second approach follows Tien et al. (2021)’s study in which
they computed a multitask loss based on both emotion and cohesion losses. Similarly,
other loss functions could be developed to integrate other group processes.

2.3.4.5 Summary

To summarize, many paths could be undertaken at Model level. Figure 2.8 shows the
current state of the literature on automated analysis of cohesion. As for the Input level,
studies first focused on the simpler approaches.

At Model level, most of the approaches remain to be explored. This is primarily due to
the fact that DNN architectures, that offer more flexibility in the architecture design, are,
to the best of our knowledge, under-investigated for the automated analysis of cohesion.
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Figure 2.8: Summary of the approaches implemented at the Model level, according to
their complexity of integration. At this level, most studies applied simple strategies, es-
pecially regarding the first three RAs (i.e., time dependencies between segments, the in-
terplay between Social and Task cohesion and the group modeling were not investigated).
For more details about the approaches, refer to the corresponding color in Figure 2.6.

2.3.5 Approaches Employed at the Output Level

2.3.5.1 Addressing the Temporal Nature of Cohesion (RA1)

When designing computational models of cohesion, its aim should be clearly defined as
it would impact its design and the approaches employed at every level of the structured
survey. It is, indeed, crucial to define how the model should handle the temporal nature
of cohesion. In fact, it can predict cohesion for each segment (e.g., time window, image),
as in all of the previously mentioned studies on the automated analysis of cohesion, for a
specific task or interaction (i.e., a part of the overall group interaction), or for the whole
interaction. In all of the models presented in Chapter 5 and Chapter 6, we predict the
cohesion dynamics for multiple tasks, taking into account the whole interaction.

2.3.5.2 Addressing the Group Modeling (RA2)

Modeling the group at the Output level is a complex task. As of today, most of the com-
putational studies on cohesion rely on external assessments of cohesion to provide labels
for each interaction (e.g., Hung and Gatica-Perez, 2010; Zhu et al., 2019; Zou et al.,
2020). Collecting these external assessments is time-consuming and prone to errors and
subjectivity. In studies where there are two or more raters, statistics such as Intraclass
Correlation Coefficient (ICC), are applied to make sure ratings are reliable, for each an-
notated interaction. While such a labeling strategy based on external assessments is well
defined and broadly used, the use of either internal or external observations of a group in
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terms of cohesion remains an open debate (Casey-Campbell and Martens, 2009). There
are, however, to the best of our knowledge, only a few computational models based on
self-assessments of cohesion (i.e., Wang et al., 2012; Zhang et al., 2018). This is probably
due to the fact that no dataset designed specifically for the automated analysis of cohesion
exists, hence, making it impossible to collect self-assessments during the interaction.

The structured survey presents four labeling strategies based on self-assessments. The
easiest to implement consists of aggregating the cohesion scores collected for each indi-
vidual (e.g., by taking the mean of individual scores) to produce a group cohesion score.
Such an approach is used in our models (see Chapter 5 and Chapter 6). Most of the ques-
tionnaires used to assess cohesion, however, contain questions that concern the individual
towards the group as well as the group as a whole (e.g., “I was unhappy with my team’s
level of desire to win” and “Our team did not work well together”, respectively, from the
GEQ questionnaire). Thus, disagreements in the perception of cohesion can occur be-
tween the group members. These could be taken into account in the labeling strategy to
compute more nuanced or robust labels.

Another approach would consist, if available, of merging both self- and external as-
sessments of cohesion to produce a “true” label. Both types of assessments, indeed, have
pros and cons (Vinciarelli and Mohammadi, 2014). Self-assessments of cohesion might
be over-optimistic since group members tend to provide ratings towards socially desirable
characteristics. External assessments reflect the behavior that people adopt toward others,
without necessarily corresponding to their true internal state (Uleman et al., 2008). Im-
plementing a labeling strategy able to handle both types of assessment could help develop
more robust computational models. Such an approach is explored in Chapter 5.

Finally, similarly to an approach described at the Input level, we could build labels for
group modeling that integrate the relationships with other group processes. Labels could,
indeed, be based on group members’ characteristics such as leadership. For example,
more weight could be given to the cohesion ratings provided by the leader of the group.
Such a strategy would help compute more robust labels since it would integrate, at the
Output level, extra information that is relevant to cohesion.

2.3.5.3 Addressing the Interplay between the Social and Task Dimensions (RA3)

For this research axis, it must be decided at which granularity cohesion is defined. Co-
hesion can, indeed, be defined as a whole, without any distinction between its dimen-
sions (as in most of the computational studies on cohesion, e.g., Hung and Gatica-Perez,
2010; Fang and Achard, 2018; Wang et al., 2020; Kantharaju et al., 2020) or, oppositely,
as a multidimensional construct (as in Nanninga et al., 2017). In the latter case, the output
of the model can (1) only predict a specific dimension (cf. Nanninga et al., 2017), (2) pre-
dict both dimensions, and (3) predict cohesion as a whole, building on the combination of
multiple dimensions (e.g., Social and Task cohesion). The first approach is the simplest
to implement. The second one depends on how we consider the relationships between the
dimensions. In fact, a multilabel setting implies that both dimensions are strongly related
as both dimensions would be predicted from the same model or layer in the case of a
DNN architecture. These two approaches are implemented in Chapter 5 and Chapter 6. A
multitask approach, however, suggests that both dimensions are less related since they are
predicted independently and could potentially share almost no layers. The last approach
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would allow the model to predict a cohesion score that already takes into account the
interplay between both dimensions, hence, easing the implementation of more complex
computational models. This approach remains to be addressed.

2.3.5.4 Addressing the Relationships with Other Group Processes (RA4)

In addition to the last approach presented in RA3, another one consists of jointly predict-
ing cohesion alongside another related group process. Thus, as for RA2 at the Output
level, this can be done in a multilabel or a multitask setting. In these ways, cohesion
would benefit from the knowledge learned from another process. That is the approach ex-
ploited by Guo et al. (2019), Xuan Dang et al. (2019), Ghosh et al. (2022) and Zou et al.
(2020). In Chapter 6, we also implement such an approach to jointly predict cohesion and
group emotion.

2.3.5.5 Summary

At Output level, the choice of the appropriate approach may vary a lot depending on the
aim of the model. In fact, depending on the application, some approaches from the struc-
tured survey may not be applicable (e.g., if self-assessments are not available). Figure 2.9
highlights what are the approaches employed at Output level in the current literature on
automated analysis of cohesion.

As at previous levels, most of the time, approaches that are easier to integrate into the
models are employed. Thus, it remains to be seen to what extent each approach described
in this structured survey contributes to improving computational models of cohesion.

Figure 2.9: Overview of the approaches applied at the Output level, sorted according to
their complexity of integration. For RA2 and RA4, approaches employed at this level are
the easier to integrate, due to the characterization of the group processes of study. For
more details about the approaches, refer to the corresponding color in Figure 2.6.

34



2.4. CONCLUSION

2.4 Conclusion

C OHESION is a complex group affective emergent state that evolves over time.
Multiple definitions, models, and theoretical frameworks exist, with a various
number of dimensions. Scholars in Social Sciences, however, all acknowl-
edge the existence of its Social and Task dimensions. In the remaining of the

Thesis, the work is based on the Severt and Estrada (2015)’s framework. Such a frame-
work considers cohesion as a multidimensionnal emergent state that has both Affective
and Instrumental functions and that can be studied at different levels (i.e., horizontal and
vertical), hence, adapting to various types of groups and contexts. This framework also
integrates that cohesion is interrelated with other group processes such as group emotion.

Based on the review of the Social Sciences literature, we identified four research axes
to develop computational models of cohesion. These, aim to address the Temporal nature
of cohesion (RA1), the Group modeling (RA2), the Interplay between its dimensions
(RA3), and the Relationships with other group processes (RA4).

In this Chapter, we also presented the existing work on the automated analysis of cohe-
sion from nonverbal behaviors. We also organized and explained the various approaches
implemented in these studies into a structured survey. Each approach is clustered ac-
cording to a research axis and the level at which it can be applied (i.e., Input, Model, or
Output). Such a categorization was inspired by the IPO theoretical framework for study-
ing emergent states.

Finally, given the relatively small literature on the automated analysis of cohesion, we
also described, at each level, novel approaches to investigate cohesion through each of the
research axes. These are implemented and discussed in Chapter 5 and Chapter 6.
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I N this Chapter, we first review the existing datasets that are used for automatically
studying small groups within the Social Signal Processing community. Then, we
introduce GAME-ON (Group Analysis of Multimodal Expression of cohesiON), a
multimodal dataset specifically designed for studying cohesion and for explicitly

controlling its variations over time. GAME-ON is composed of more than 11.5h of au-
dio, video, and motion capture data, as well as assessments of various processes. These
assessments include self- and external repeated assessments of cohesion, self- repeated
assessments of warmth and competence, emotions, leadership, competitivity, and motiva-
tion. Then, we perform a data analysis to assess the design of the data collection.

In particular, I co-designed and co-participated in the data collection. I also post-
processed motion capture and audio data and ran a part of the statistical analysis of the
cohesion questionnaires.

3.1 Available Datasets

The rise of interest in the automatic analysis of human-human interactions, coupled with a
lack of publicly available data, led researchers to collect datasets to capture various group
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processes (see Čereković, 2014, for a review). Collecting data, especially in a multimodal
fashion is, however, a long and costly process that becomes increasingly complex in the
context of small groups’ interactions, depending on the number of persons and devices
required. Most of the publicly available datasets that involve social interactions among
at least three persons have been designed either to record social interactions in different
environments to improve group and crowd recognition algorithms (see Borja et al., 2017,
for a review), or in a specific context such as meetings (e.g., AMI, VACE, ELEA - Carletta
et al., 2006; Chen et al., 2006; Sanchez-Cortes et al., 2011b, respectively), conversational
groups (e.g., SALSA, MatchNMingle - Alameda-Pineda et al., 2017; Cabrera-Quiros
et al., 2021, respectively), working on a task (e.g., MULTISIMO, AMIGOS, WoNoWa
- Koutsombogera and Vogel, 2018; Miranda Correa et al., 2018; Biancardi et al., 2020,
respectively) or playing games (e.g., Idiap Wolf, Panoptic, MUMBAI - Hung and Chit-
taranjan, 2010; Joo et al., 2019; Doyran et al., 2021, respectively).

These datasets also differ in terms of (a) the amount of data available, ranging from a
few interactions corresponding to 1h of data (i.e., SALSA Alameda-Pineda et al., 2017)
to 167 interactions corresponding to 100h of data (i.e., AMI Carletta et al., 2006), (b)
the number of persons (e.g., fixed to three in MULTISIMO vs varying between eight and
twelve in the Idiap Wolf), and (c) the technology used to capture data. Regarding the last
point, most of the datasets consist of video and/or audio recordings of the interactions
(e.g., AMI, ELEA, Idiap Wolf, MUMBAI). To capture more diverse and precise data,
other sensors have been used such as optical motion capture in VACE, accelerometers in
SALSA, wearable devices and identifiers in MatchNMingle and WoNoWa, 360°cameras
in MULTISIMO, or electroencephalogram (EEG), electrocardiogram (ECG) and Gal-
vanic Skin Response (GSR) in AMIGOS. In addition, authors of the Panoptic dataset
built a complex setup composed of various sensors (i.e., the Massivey Multiview Sys-
tem1), dedicated to the recording of social interaction.

Finally, among all of the previously mentioned datasets, ELEA was one of the first
to collect data for specifically investigating a group process (i.e., emergent leadership).
It, indeed, addresses emergent leadership in groups by using a well-known meeting situ-
ation called the “Winter Survival Task”, a game where two participants have to identify
objects (out of a predefined list) that would increase their chances of survival in a polar
environment. ELEA, however, did not refer to emergent group states but rather focused
on the emergence of individual leaders in group interactions. Nevertheless, it includes
self- and/or external annotations (i.e., personality traits, Big Five, leadership, dominance,
competence, likeness) that give the opportunity to use such a dataset for other purposes.
Similarly, AMIGOS was also designed to study specific processes. It, indeed, focuses on
the affect, mood, and personality of individuals and groups and provides a large variety
of self- and external annotations (e.g., emotions, valence, arousal, dominance, liking).
MUMBAI also provides a significant amount of data (i.e., more than 46 hours available)
for automatically studying emotions and expressions. It is extensively annotated with
emotional moments and self-assessments of the personality of each group member are
also provided. While ELEA, AMIGOS, and MUMBAI explore individual processes in
multi-person settings, the WoNoWa dataset is designed to study a group emergent state
over time. It provides around 6 hours of multimodal data to study Transactive Memory

1http://domedb.perception.cs.cmu.edu/
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System (TMS), a group emergent state characterizing the group’s meta-knowledge about
“who knows what”. In addition to the video and audio data available, this dataset provides
self-assessments of warmth and competence, TMS, and leadership.

Despite the ever-growing number of datasets for studying small groups’ interactions
and, lately, for studying specific group processes and emergent states, there is, to the best
of our knowledge, no existing dataset that explicitly addresses cohesion. Thus, we intro-
duce GAME-ON (Group Analysis of Multimodal Expression of cohesiON), a multimodal
dataset specifically designed for studying group cohesion and for explicitly controlling its
variation over time. It consists of multimodal (audio, video, and motion capture data)
synchronized recordings of small groups (three persons) playing an escape game, that is
a game where the players, in a limited amount of time, have to escape a room by collab-
orating and solving puzzles and other tasks. Such a context helped to engage participants
in various tasks, hence, eliciting natural behaviors. This dataset is dedicated to the study
of cohesion, and more specifically to its instrumental dimensions (i.e., Social and Task)
according to the Severt and Estrada (2015)’s theoretical framework of cohesion. Our
dataset also provides a significant amount and diversity of data with the use of a combina-
tion of two motion capture systems, in addition to HD video and audio recordings. It also
contains repeated self-annotations per participant about their perception of cohesion over
time as well as external assessments, giving insights into the dynamics of this emergent
group state from both perspectives. We also collected assessments about participants’
emotions as well as about their perception of leadership and warmth and competence of
each group member including themselves.

Table 3.1 shows the main datasets reviewed in this Section, that are used for automat-
ically studying small groups interactions within the Social Signal Processing community.
Moreover, it also provides the characteristics of the GAME-ON dataset.

3.2 The GAME-ON Dataset

3.2.1 Data Collection Design

3.2.1.1 The Game

The game scenario is inspired by the rules of Cluedo2 and is conceived as an escape game.
Cluedo is a board game where three to six players try to figure out three main facts of a
murder: the murderer, the location of the murder, and the weapon used to kill the victim.
An escape game is a physical social game in which a small group of players is fake locked
in a room set up according to a specific theme. The players have to cooperatively discover
clues, solve puzzles, and so on to accomplish a specific goal (e.g., escaping, finding an
object, or solving a murder) in a limited amount of time. Social games, such as escape
games, are, indeed, a form of socially rich multi-party problem solving where people
coordinate and like to spend time together to achieve common goals. They have been
considered a viable research methodology to address the subtle nuances of human-human
communication in several research domains, from Psychology (Freedman and Flanagan,
2017) and neuroscience (Redcay and Schilbach, 2019) to behavioral economics (Van Dijk

2See the Cluedo game at https://www.hasbro.com
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3.2. THE GAME-ON DATASET

Table 3.1: A selection of the main datasets used for automatically studying small groups
interactions. Datasets are grouped by scenario. Information about their focus, the size of
the groups, the recordings’ duration, the type of annotation (self and/or external), and the
different technologies used to collect the data are provided.

D
at

a
A

n
n

ot
at

io
n

s
M

ot
io

n
ca

p
tu

re
D

at
as

et
S

ce
n

ar
io

F
oc

u
s

G
ro

u
p

si
ze

D
u

ra
ti

on
S

el
f

(⋆
),

E
xt

er
n

al
(*

)
V

id
eo

(H
D

)
A

u
d

io
In

er
ti

al
O

pt
ic

al
O

th
er

A
M

I
(M

cC
ow

an
et

al
.,

2
0

0
5

)
M

ee
ti

n
g

In
d

iv
id

u
al

ac
ti

o
n

s,
fa

ce
b

eh
av

io
rs

,
sp

ee
ch

4
1

6
7

m
ee

ti
n

g
s

1
0

0
h

A
g

re
em

en
ts

*
,

d
is

ag
re

em
en

ts
*

,
d

o
m

in
an

ce
*

✔
✔

✕
✕

✕

V
A

C
E

(C
h

en
et

al
.,

2
0

0
6

)
M

ee
ti

n
g

E
ve

n
t

in
te

rp
re

ta
ti

o
n

,
m

u
lt

im
o

d
al

si
g

n
al

p
ro

ce
ss

in
g

5
N

/A
S

p
ea

ke
r

se
g

m
en

ta
ti

o
n

*
,

sp
ee

ch
tr

an
sc

ri
p

ti
o

n
*

,
F

-f
o

rm
at

io
n

s*
✔

✔
✕

✔
✕

E
L

E
A

(S
an

ch
ez

-C
o

rt
es

et
al

.,
2

0
1

1
b

)
M

ee
ti

n
g

L
ea

d
er

sh
ip

,
n

o
n

ve
rb

al
b

eh
av

io
rs

3
-4

4
0

m
ee

ti
n

g
s

~
1

0
h

P
er

so
n

al
it

y
tr

ai
ts

⋆
,

B
ig

F
iv

e⋆
,

p
er

ce
iv

ed
le

ad
er

sh
ip

⋆
*

,
d

o
m

in
an

ce
⋆
*

,
co

m
p

et
en

ce
⋆
,

li
ke

n
es

s⋆
,

ra
n

ke
d

d
o

m
in

an
ce

⋆
*

✔
✔

✕
✕

✕

S
A

L
S

A
(A

la
m

ed
a-

P
in

ed
a

et
al

.,
2

0
1

7
)

F
re

e
S

ta
n

d
in

g
C

o
nv

er
sa

ti
o

n
al

G
ro

u
p

N
at

u
ra

l
so

ci
al

in
te

ra
ct

io
n

s,
F

-f
o

rm
at

io
n

s
2

-1
8

1
h

P
er

so
n

al
it

y
*

,
p

o
si

ti
o

n
*

,
h

ea
d

*
,

b
o

d
y

o
ri

en
ta

ti
o

n
*

,
F

-f
o

rm
at

io
n

*

✔
✔

✕
✕

ID
/R

F
ID

,
b
lu

et
o
o

th
,

A
cc

el
er

o
m

et
er

s

M
at

ch
N

M
in

g
le

(C
ab

re
ra

-Q
u

ir
o

s
et

al
.,

2
0

2
1

)

F
re

e
S

ta
n

d
in

g
C

o
nv

er
sa

ti
o

n
al

G
ro

u
p

,
sp

ee
d

d
at

es

A
u

to
m

at
ic

an
al

y
si

s
o

f
so

ci
al

si
g

n
al

s
an

d
in

te
ra

ct
io

n
s

2
-8

2
h

H
E

X
A

C
O

⋆
,

S
el

f
C

o
n

tr
o

l
S

ca
le

⋆
,

S
o

ci
o

se
x

u
al

O
ri

en
ta

ti
o

n
In

ve
n

to
ry

⋆
,

so
ci

al
cu

es
*

,
so

ci
al

ac
ti

o
n

s*
F

-f
o

rm
at

io
n

s*

✔
✔

✕
✕

W
ea

ra
b
le

d
ev

ic
es

re
co

rd
in

g
tr

ia
x

ia
l

ac
ce

le
ra

ti
o

n
an

d
p

ro
x

im
it

y

M
U

L
T

IS
IM

O
(K

o
u

ts
o

m
b

o
g

er
a

an
d

V
o

g
el

,
2

0
1

8
)

E
x

p
er

im
en

t
S

o
lv

in
g

a
q

u
iz

H
u

m
an

-h
u

m
an

in
te

ra
ct

io
n

s,
g

ro
u

p
s’

m
u

lt
im

o
d

al
b

eh
av

io
r

3
2

3
se

ss
io

n
s

~
4

h

P
er

so
n

al
it

y
⋆
,

ex
p

er
ie

n
ce

⋆
,

sp
ea

ke
r

se
g

m
en

ta
ti

o
n

*
,

d
o

m
in

an
ce

*
,

tr
an

sc
ri

p
ts

*
,

tu
rn

-t
ak

in
g

*
,

em
o

ti
o

n
s*

✔
✔

✕
✕

3
6
0

°c
am

er
a,

2
K

in
ec

ts

A
M

IG
O

S
(M

ir
an

d
a

C
o

rr
ea

et
al

.,
2

0
1

8
)

E
x

p
er

im
en

t
W

at
ch

in
g

v
id

eo
s

A
ff

ec
t,

p
er

so
n

al
it

y,
m

o
o

d
4

~
9

h

B
ig

-F
iv

e⋆
,

PA
N

A
S
⋆
,

va
le

n
ce

⋆
*

,
ar

o
u

sa
l⋆

*
,

d
o

m
in

an
ce

⋆
,

li
k

in
g
⋆
,

fa
m

il
ia

ri
ty

⋆
,

em
o

ti
o

n
s⋆

✔
✔

✕
✕

E
E

G
,

E
C

G
,

G
S

R

W
o

N
o

W
a

(B
ia

n
ca

rd
i

et
al

.,
2

0
2

0
)

E
x

p
er

im
en

t
C

o
ll

ab
o

ra
ti

ve
ta

sk
s

T
ra

n
sa

ct
iv

e
M

em
o

ry
S

y
st

em
(T

M
S

)
3

~
6

h

A
u

d
io

/V
id

eo
fe

at
u

re
s*

,
W

ar
m

th
an

d
co

m
p

et
en

ce
s⋆

,
T

M
S
⋆
,

le
ad

er
sh

ip
⋆

✔
✔

✕
✕

W
ea

ra
b

le
id

en
ti

fi
er

s

T
h

e
Id

ia
p

W
o

lf
(H

u
n

g
an

d
C

h
it

ta
ra

n
ja

n
,

2
0

1
0

)
G

am
e

D
ec

ep
ti

ve
ro

le
s,

g
ro

u
p

in
te

ra
ct

io
n

8
-1

2
4

g
ro

u
p

s
~

7
h

S
p

ea
ke

r
se

g
m

en
ta

ti
o

n
*

,
ro

le
s

id
en

ti
fi

ca
ti

o
n

s*
✔

✔
✕

✕
✕

P
an

o
p

ti
c

(J
o

o
et

al
.,

2
0

1
9

)
G

am
e

C
ap

tu
ri

n
g

so
ci

al
in

te
ra

ct
io

n
s

3
-8

6
5

se
q

u
en

ce
s

5
,5

h
✕

✔
✔

✕
✕

M
as

si
ve

ly
M

u
lt

iv
ie

w
S

y
st

em

M
U

M
B

A
I

(D
oy

ra
n

et
al

.,
2

0
2

1
)

G
am

e

A
u

to
m

at
ed

an
al

y
si

s
o

f
m

u
lt

im
o

d
al

b
eh

av
io

r,
ex

p
re

ss
io

n
d

et
ec

ti
o

n
,

em
o

ti
o

n
cl

as
si

fi
ca

ti
o

n

4
~

4
6

h

G
am

e
o

u
tc

o
m

e*
,

p
la

y
er

af
fe

ct
*

,
p

er
so

n
al

it
y
⋆
,

g
am

e
ex

p
er

ie
n

ce
⋆

✔
✕

✕
✕

✕

G
A

M
E

-O
N

(M
am

an
et

al
.,

2
0

2
0

)
G

am
e

A
u

to
m

at
ed

an
al

y
si

s
o

f
m

u
lt

im
o

d
al

b
eh

av
io

r,
co

h
es

io
n

,
n

o
n

ve
rb

al
b

eh
av

io
rs

3
1

7
g

ro
u

p
s

~
1

1
,5

h
(a

s
a

g
ro

u
p

)
~

3
4

.5
h

(a
s

in
d

iv
id

u
al

)

C
o

h
es

io
n
⋆
*

,
le

ad
er

sh
ip

⋆
,

em
o

ti
o

n
al

st
at

e⋆
,

w
ar

m
th

an
d

co
m

p
et

en
ce

s⋆

✔
✔

✔
✔

✕

39



CHAPTER 3 – DATA COLLECTION

et al., 2020) and human-computer interaction (Bonillo et al., 2019). There exist, indeed,
several datasets in which social games are exploited as an experimental tool for eliciting
socio-affective behavior such as laughter (Niewiadomski et al., 2013), deceptive behav-
ior (Hung and Chittaranjan, 2010) and members’ affect and personality (Doyran et al.,
2021), or for evaluating interaction capture methods (Joo et al., 2019). At the time of the
data collection, there was, however, no dataset specifically designed for studying a spe-
cific emergent state, according to Social Sciences’ theories and theoretical models. It is
only very recently that Biancardi et al. (2020) collected the WoNoWa dataset for automat-
ically studying Transactive Memory System, a cognitive emergent state, through its three
dimensions (i.e., specialization of members’ knowledge, credibility, and coordination).

In the context of GAME-ON, the game created an engaging experience for the partic-
ipants, allowing us to collect measurements of the dimensions of cohesion multiple times
by naturally breaking the whole interaction into distinct tasks. The game scenario was the
following:

During the XIIth century, a brilliant mathematician, student of Leonardo Fibonacci3,
was assassinated. His ghost is trapped in a theater. Every year the ghost locks people
there asking them to help him to discover who killed him, with what weapon, and where.

The scene contains five posters of the suspects, with a short description of their per-
sonality, eight potential weapons, with a symbol attached to them, and seven different
places where the murder could have occurred (see Figure 3.1). The game is divided into

Figure 3.1: The game area and the material required to solve the murder. Blue circles
correspond to the posters of the suspects, yellow circles represent the places where the
murder could have occurred and the potential weapons are circled in red.

3Leonardo Fibonacci (c.1170 – c.1240–50) was an Italian mathematician from the Republic of Pisa.
He is best known for his discovery of a particular number sequence, which has since become known as the
Fibonacci Sequence
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3.2. THE GAME-ON DATASET

five tasks and participants were instructed to finish the game as quickly as possible. In
fact, they had up to 1h to solve the murder and escape from the theater. During each task,
they could find different clues, helping them to solve the murder or unlock a new task of
the game. Between each task, participants were asked to fill up questionnaires that were
conceived as part of the game (e.g., once completed, they received a code for unlocking
the next instructions). Details about the questionnaires are provided in Section 3.2.1.4.

To create some competition between the groups and/or among the members of each
group, we established a group and an individual leaderboard. This was based on the time
participants took to solve the murder and on their performances on the different tasks.
Leaderboards are an effective way to motivate participants through competition (Nov and
Arazy, 2013; Codish and Ravid, 2014; Hamari et al., 2014).

The design of the game has been tested and incrementally adjusted until the beginning
of the data collection to ensure that the game flow was coherent and that the tasks were
understandable by the participants (e.g., we displayed some hints on the wall to make sure
that everyone could still progress in the game).

3.2.1.2 Participants

We ran a campaign for recruiting participants through the GRACE website and social me-
dia, mailing lists, and the distribution of flyers. The protocol was approved by the Ethics
Committee of the Department of Informatics, Bioengineering, Robotics and System En-
gineering of the University of Genoa, Italy.

To take part in the data collection, participants gave written informed consent and
needed to be over 18 (legal age in Italy), to have a good understanding of written and spo-
ken Italian (as all the rules, questionnaires and hints were in Italian) and to participate in a
group of three friends without any hierarchical status among them. This last point is very
important as we are only controlling the functional property of cohesion at the horizontal
level. Having participants considering themselves as friends allowed us to infer that the
affective property of cohesion, according to Severt and Estrada (2015)’s framework, is ap-
proximately constant over the time of the data collection, hence, providing us a baseline
for studying variations of the instrumental property of cohesion (i.e., the Social and Task
dimension). We also observed during the pre-tests, that having participants considering
themselves friends, really impacted the spontaneity of the reactions and the dynamics of
the group. Also, cohesion can take a long time to emerge in groups of strangers. For
instance, previous studies show how cohesion is more volatile during the early phases
of team functioning (Mullen and Copper, 1994) and sustainable Task cohesion emerges
more quickly than does sustainable Social cohesion (Grossman et al., 2015).

A total of 17 groups (i.e., 51 persons) participated in the data collection. Participants
ages ranged from 21y to 33y (M = 25.3y, SD = 3.1y) with 69% identified as female (i.e.,
35 participants) and 31% identified as male (i.e., 16 participants). Participant’s friendship
duration ranged from 1 month to 22 years (M = 3.1y, SD = 2.5y). Concerning the escape
game experience of the participants, 65% (i.e., 33 participants) had never participated
in an escape game before, 25% (i.e., 13 participants) only tried once and 10% (i.e., five
participants) participated multiple times. Only two participants had already gone to an
escape game together before.
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Participants received a small gift having a value inferior to 10 euros as a nominal
honorarium for their participation.

3.2.1.3 Procedure

The data collection took place at Casa Paganini in Genoa, Italy4. This is an ancient mon-
umental building having a space, which was formerly used as a theatre. This space is
now exploited as a location for experiments on movement analysis in naturalistic settings
and is endowed with a technological infrastructure for motion capture and multimodal
recordings. First, we welcomed participants in a room next to the theater and we asked
them to read the purpose of the data collection and sign the consent form. Before start-
ing the game, participants also filled up a set of questionnaires to assess their level of
friendship, their experience in escape games, their initial perception of cohesion within
the group, participants’ warmth and competence, and, finally, their attitude toward group
games. More details and explanations of these questionnaires are in Section 3.2.1.4. They
were filled up on an Android tablet (one for each participant) that we lent them for the
time of the game. Then, the participants entered the theater. Researchers helped them to
wear the motion capture suits and the radio-microphones followed by a full check of the
setup to make sure that the data was streamed properly. Participants were allowed to in-
teract freely on stage for a few minutes to get acquainted with the sensors. Then, the game
started with a pre-recorded audio-video presentation explaining the context and the rules.
The presentation was displayed on a wall of the game area. This was done to avoid any
bias in providing participants with instructions. Similarly, we used another presentation
during the game, automatically displaying additional information, clues, or reminders.

The game consisted of five tasks and was designed ad hoc to control the instrumental
functional property of cohesion. Each task was conceived for a specific purpose to elicit
a controlled variation of the Social and Task dimensions of cohesion (i.e., its increase or
its decrease). In the following, we refer to those as Increase of Cohesion (I) and Decrease
of Cohesion (D). The duration of each task was timed according to the feedback collected
during the pre-tests and its difficulty (see Table 3.2 for the timings of the tasks). Figure 3.2
summarizes the flow of the game. In this Figure, bubbles indicate the questionnaires
administered before, during, and after the game. To not break the dynamics of the game
and to avoid weariness, we integrated the questionnaires into the game logic. For example,

Table 3.2: Expected variations of cohesion per task and the duration of each task. DS and
IS refer to a decrease and an increase in Social dimension, whereas DT and IT refer to a
decrease and an increase in Task dimension.

No. Task Task name Social dimension Task dimension Duration (min)
1 Discovery Decrease (DS) Decrease (DT) 10
2 Enigmas DS Increase (IT) 9
3 The impossible Increase (IS) DT 7
4 The weird object IS IT 7
5 The presentation IS IT 8

4http://www.infomus.org/index_eng.php
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3.2. THE GAME-ON DATASET

Figure 3.2: Timeline of the flow of the game. The questionnaires are displayed in chrono-
logical order before, between and after the tasks. The expected variations in cohesion are
indicated at the bottom of each image taken from the dataset.

participants had to finish the questionnaires to get a code to unlock the next task. In
that way, we ensured that all the participants filled up all the questionnaires at the same
moment of the game.

Below, we report a detailed description of each of the five tasks:

• Task 1: Discovery (DS & DT)
Participants were asked to find two objects, a box and its key, hidden in the game
area. The box contained the instructions and materials for the next task. Participants
had up to 10 minutes to complete this task. By finding objects, they get bonus
points, otherwise, they lose points for their personal score on the leaderboard. This
task was conceived to encourage participants to discover the game area while being
in competition among them to find the objects in order to limit social interactions.

• Task 2: Enigmas (DS & IT)
17 enigmas were divided into the following different categories: 1) Matchsticks:
these are rearrangement puzzles in which a number of matchsticks are arranged
as squares, rectangles or triangles. The aim is to move one, or a limited num-
ber, of matchsticks to create a new shape; 2) Logic: these enigmas describe a spe-
cific situation or context and ask the participant to find a logical explanation for it;
3) Numbers: these problems require calculations and ask the participant to give a
mathematical solution to the problem; and 4) Observation: these enigmas propose
visual scenes with squares or circles and participants need to link different objects
together. We intentionally chose enigmas that require different skills to make sure
that every participant could contribute.
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Participants had 4 minutes to split all the enigmas taking into account every par-
ticipant’s skills. This brainstorming was expected to elicit an increase in the Task
dimension (IT). Once participants split the enigmas, or if the 4 minutes were over,
they had to start working on them in dedicated areas of the stage. They were not
allowed to talk, otherwise, they would lose points. We established this rule to limit
social interactions. Every time a participant completed an enigma, she had to put it
on a box located outside of the game area. This added some stress and we could ob-
serve interesting behaviors (e.g., we noticed that successful participants were often
looked at by the other group members when they moved to the box).

Participants had 5 minutes to solve a maximum of enigmas. At the end of the
game, we added or subtracted points to the group regarding the number of correct
and wrong answers. All groups received a 4 minutes extra time reward at the end
of the last task.

• Task 3: The impossible task (IS & DT)
This task included three different sub-tasks. Participants still needed to collaborate
as two out of three puzzles gave hints about the murderer and the weapon. The
group received 60 square pieces of paper of different sizes and colors with a number
written on the front and a letter written on the back. One person had to reconstruct
a part of the Fibonacci sequence (i.e., a sequence starting with 1 and 1, where each
subsequent number is the sum of the previous two), another one had to reconstruct
a palindrome spotted on a murderer poster, and the last one had to construct a
Fibonacci clock indicating 3:45 pm. A Fibonacci clock is composed of five squares
whose side lengths match the first Fibonacci numbers (i.e., 1, 1, 2, 3, and 5). The
hours are displayed in red and the minutes in green. When a square is blue, it means
that it indicates both the hours and the minutes. White squares are ignored. Hours
are obtained by summing the values of the red and blue squares while minutes are
five times the sum of the values of the green and blue squares. Figure 3.3 shows a
Fibonacci clock indicating 3:45pm. On each weapon, a different Fibonacci clock
was printed and participants had to find the clock indicating 3:45 pm to guess the
weapon used for the murder.

Figure 3.3: Fibonacci clock indicating 3:45pm. Hours are the sum of the red and blue
squares’ values (i.e., 2 + 1 = 3) while minutes are five times the sum of the green and
blue squares’ values (i.e., 5× (5 + 3 + 1) = 45).
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We made this task impossible to achieve as each problem required the same pieces
of paper. Moreover, the task had to be done within 7 minutes, adding some pres-
sure on the participants. As each participant could not complete their part of the
puzzle without negatively impacting other members of their group, we expected a
decrease in the Task dimension of cohesion (DT), whereas the Social dimension
was expected to increase (IS) due to the high number of interactions provoked by a
stressing situation.

• Task 4: The weird object task (IS & IT)
It consisted of guessing what an unusual object was. Participants had to link it to
one of the seven potential places of the murder. Then, the group had to write their
solution and explanation on a paper and put it in a box. If they guessed it right, they
earned extra points at the end of the game. This task was timed to 7 minutes.

• Task 5: The presentation (IS & IT)
The group had 4 minutes to provide a first solution to the murder in an original
way (e.g., acting). At the end of the presentation, a red signal was always given by
the researcher in charge of the session, indicating that the group provided a wrong
solution. This was designed to observe the group’s reaction after failing. We gave
them an extra 4 minutes to present a second solution. At the end of it, a green signal
was always given, indicating that they found the solution.

Task 4 and Task 5 required participants to be creative. We did this choice due to the
fact that creativity enhances social interactions, eliciting situations with an increase of
cohesion for the Social dimension (Keller, 1986). Also, the fact that the group had to
reach a common decision was expected to amplify the Task dimension of cohesion. In
both Task 4 and Task 5, Social and Task cohesion were expected to increase.

At the end of the data collection session, participants were briefed about the details,
the aims, and the context of the study. Moreover, researchers answered all of the par-
ticipants’ questions. Before leaving the theater, participants were asked to fill up a last
questionnaire to obtain their feedback on the game.

3.2.1.4 Questionnaires

Participants were asked to fill up several questionnaires at the beginning, at the end of the
data collection, and after each task to further assess group cohesion as well as other group
processes such as leadership. We chose to adopt repeated measures at regular intervals
to reach a good level of granularity and to be able to detect changes in the processes.
The questionnaires were presented in the same order after each task, but the order of
the items of each questionnaire was randomized to keep participants’ attention. All the
English version of the items from the questionnaires we analyzed are in Appendix A, and
Figure 3.2 shows the order in which we distributed the questionnaires.

As this data collection involved Italian speakers, we used validated Italian versions of
each questionnaire, when they were available. Otherwise, we translated the items without
changing the valence nor the grammatical construction of the questions, according to the
guidelines provided by Carron and Brawley (2000). Original Likert scale formats were
retained. In the following a description of each questionnaire is provided:
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• Cohesion: We used the Group Environment Questionnaire (GEQ) (Carron et al.,
1985), an 18-items self-report survey with a 9-point Likert scale answering format
(from 1: “Strongly disagree” to 9: “Strongly agree”) that is designed to assess So-
cial and Task cohesion according to Carron’s model (see Figure 2.2). Even if it
was initially designed for studying cohesion in a sport environment, several stud-
ies have shown how it can be leveraged for addressing group situations in other
contexts, for example in work meetings (Carless and De Paola, 2000; Michalisin
et al., 2004) or in exercise classes (Estabrooks and Carron, 2000a) and even in dif-
ferent cultural contexts (Heuzé and Fontayne, 2002). Thus, we selected the GEQ
to measure group members’ self-assessment of cohesion. In particular, we used an
Italian version of the GEQ (Andreaggi et al., 2000) to match the participants’ first
language. We administrated such a questionnaire before the data collection (i.e., to
obtain a baseline of cohesion within the group) and after each task. The first time
we administrated the GEQ, before Task 1, we decided to discard the two following
items as we considered that they were not related to the escape game context and
hardly adaptable: “I’m not happy with the amount of playing time I get” and “Mem-
bers of our team do not stick together outside of practice and games”. Concerning
the questionnaires administered between the tasks, we used a shorter version of the
GEQ as the answers to some items would not evolve during the time of the data
collection. We discarded the two following items: “For me, this team is one of the
most important social groups to which I belong” and “Some of my best friends are
on this team”. We also slightly adapted the items without changing the valence nor
the grammatical construct of the questions. For example, “Our team members have
conflicting aspirations for the team’s performance” became “Our team members
had conflicting aspirations for finding the key” after the Discovery task. We also
decided to replace two items by ones from Michalisin et al. (2004) as we believe
that they are close enough to the originals and more suited to our context. In that
way, “I enjoy other parties rather than team parties” became “I wish I was on a
different team” and “I do not like the style of play on this team” was replaced by
“Our team does not work well together”.

The used version of the GEQ used between the tasks contains 14 items: eight related
to the Task dimension, and six to the Social dimension (see Appendix A.1 for all
the items).

• Warmth and competence (W&C) (Aragonés et al., 2015): This questionnaire is
a set of eight items to measure warmth and competence, answered on a 9-points
Likert scale from 1 (“I completely disagree”) to 9 (“I completely agree”). We used
a round-robin rating, meaning that each participant had to rate all the other partici-
pants and themselves. Half of the items are related to the warmth dimension whilst
the other half focus on the competence dimension. The warmth dimension captures
traits that are related to perceived intent, including friendliness, helpfulness, sincer-
ity, trustworthiness and morality whereas the competence dimension reflects traits
that are related to perceived ability, including intelligence, skill, creativity, and effi-
cacy (Fiske et al., 2007). Participants were asked to fill up this questionnaire before
and at the end of the data collection.
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• Competitivity: The Italian version of the Competitivity Attitude Scale (CAS) ques-
tionnaire was used (Menesini et al., 2018). It consists of 10 items on participants’
attitudes toward competition. This is a self-assessment questionnaire on a 5-point
Likert scale from 1 (“Never true for me”) to 5 (“Always true for me”). This ques-
tionnaire was administered just before the Discovery task with a twofold aim: to
foster participants’ competitiveness by having them reason about it and to gain fur-
ther information on participants’ attitudes towards group games.

• Emotions: To get some insights into participants’ emotions at each task, we asked
them to answer a question about their feelings by picking one among six differ-
ent labels of emotion (see Appendix A.3). Moreover, participants could select the
“other” option and provide their own label of emotion. The labels were selected by
relying on Roseman (2001)’s Emotion Theory. According to this theory, emotions
depend on the subjective perception of the ongoing situation (i.e., one’s own ap-
praisal), in terms of causal attribution (the situation was caused by someone else, by
the self, or was due to external circumstances) or in terms of being consistent or not
with one’s goals and motivations. Each emotion can be identified by a specific com-
bination of causal attribution and goal consistency (i.e., its appraisal configuration,
Roseman and Smith, 2001). For instance, a player winning a game may feel pride
as a consequence of perceiving herself as responsible for the victory (causal attri-
bution) and because winning satisfies her goal of being a good player (consistency
with personal goals and motivations). According to their appraisal configuration,
emotions can be categorized as positive or negative (Roseman, 2013). Following
this, we selected six emotions (i.e., three positive and three negative) that, given
their specific appraisal configuration, might be elicited by the game.

• Leadership: We used a set of six items on a 6-point Likert ranging from 1 (“Com-
pletely disagree”) to 6 (“Completely agree”), following Gerpott et al. (2019)’s study
that based their work on Lanaj and Hollenbeck (2015) and McClean et al. (2018)
items. For the same reasons as in the W&C questionnaire, we decided to use a
round-robin rating. Hence, participants had to rate every member of the group, in-
cluding themselves, resulting in answering each item three times. The five items
are reported in Appendix A.2.

• Motivation: We used the Intrinsic Motivation Inventory (IMI) questionnaire devel-
oped by McAuley et al. (1989) to assess the participants’ subjective experience with
our escape game. It is on a 7-point Likert scale from 1 (“Completely disagree”) to
7 (“Completely agree”). We decided to leverage this tool at the end of the data col-
lection session as a guide for our debriefing phase. Having participants’ opinions
about the game and their enjoyment would be useful for further studies. With this
in mind, we selected the Interest/Enjoyment and Perceived Competence subscales
from the IMI.

As we modified the questionnaires, we assess their consistency via an Exploratory
Factor Analysis (EFA) with oblique rotation (promax). For the GEQ and the W&C scales,
EFA was performed for both dimensions (i.e., Social/Task and Warmth/Competence, re-
spectively), each time the questionnaire was administered. The first step of the EFA
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consists of applying the Kaiser criterion (Fabrigar et al., 1999) to select all the factors
holding eigenvalues greater than 1. Then, we performed a Scree test to visually determine
the number of factors to adopt. Results are reported here below.

Consistency results (EFA)
Scree plots analysis suggested a one-factor solution for each dimension measured by the
GEQ (i.e., Social and Task cohesion) and for the W&C scale (i.e., Warmth and Com-
petence). We obtained such a result at each time the questionnaires were administered,
hence, supporting the idea that all of the items related to a specific dimension are loading
into the same factor. It also indicates the consistency of our questionnaires. Regarding
the Leadership questionnaire, Scree plots analysis suggested a multiple-factor solution.
We observed that the items were loading into multiple factors (i.e., two factors for Task 2
and Task 4 or three factors for Tasks 1, Task 3 and Task 5). Our results can be explained
by the fact that each task elicited and required different group dynamics and different
aspects of leadership. This is in line with the functional leadership theory (Morgeson
et al., 2010), according to which team leaders should adapt their behavior depending on
the group’s needs during a specific situation. Hence, we opted for a more parsimonious
solution relating all the different functions to one overall leadership factor.

Finally, regarding CAS and IMI scales, scree plot analysis suggested a two factors
solution which is in line with previous work on the CAS study (Menesini et al., 2018)
and coherent regarding the IMI scale as we only selected two subscales from the original
questionnaire (McAuley et al., 1989).

Reliability results (GLBs)
We calculated Greatest Lower Bounds (GLB) to establish the reliability of the scales (Jack-
son and Agunwamba, 1977). It corresponds to the lowest possible value that a scale’s
reliability can possess. GLB provides, indeed, a viable option in cases of a low number of
items and small sample sizes (Ten Berge and Sočan, 2004; Revelle and Zinbarg, 2009; Si-
jtsma, 2009; Bendermacher, 2010; Peters, 2014; Trizano-Hermosilla and Alvarado, 2016;
McNeish, 2018). The GLBs obtained for each questionnaire administered are reported in
Table 3.3. All of the GLBs are over 0.700, hence, indicating the reliability of the used
questionnaires (George and Mallery, 2016) for each task.

Table 3.3: GLBs obtained for each questionnaire. All are over 0.700, for each task, hence,
indicating the reliability of the questionnaires used during the data collection.

GLB values for each questionnaire
Baseline Task 1 Task 2 Task 3 Task 4 Task 5

Social .882 .726 .849 .876 .922 .974GEQ Task .920 .902 .822 .917 .919 .915
Warmth .988 - .996W&C Competence .996 - .995

Leadership - .989 .954 .931 .990 .992
CAS .882 -
IMI - .909
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3.2.2 Technical Setup
To collect GAME-ON, we built a setup that allowed us to capture, manage and visualize
data from different sources. Synchronization of the data was handled via hardware and
software, as explained in Section 3.2.2.2.

3.2.2.1 Equipment

We captured the behaviors of three participants interacting simultaneously. For this pur-
pose, we adopted a hybrid motion capture approach combining together three Shadow in-
ertial motion capture suites5 with a Qualisys optical motion capture system6. This choice
was made to take advantage of the strengths that each technology offers, correct the drifts
that may occur in long recording sessions, and avoid occlusions. Shadow’s suite is a wire-
less wearable system composed of 17 IMU sensors (3-axis accelerometers, gyroscopes,
and magnetometers), placed on the body at some precise reference points (see Figure 3.4)
plus two additional sensors, placed in the participants’ shoes. Qualisys configuration in-
cluded 16 infrared cameras optimally placed to cover the whole game area. In our setup,
Shadow and Qualisys data were captured at 100Hz. With the aim of having a perfect cou-
pling between the two systems, 17 infra-red reflective Qualisys markers were attached to
the Shadow’s IMUs with Velcro straps. Additionally, audio and video were recorded. We
used three wireless headsets microphones (AKG wireless set 800MHz with C555L head-
sets, Mono, 48kHz, 16 bits per sample), and two static professional JVC video-cameras
(1280×736, 50fps) frontally (at about 9m from the center of the scene) and laterally (at
about 4.5m from the center of the scene) placed with respect to the game area. Moreover,
two additional Panasonic handy cameras (1920×1080, 50fps) completed the setup. These
last two video-cameras were used as backup cameras and were not synchronized.

For data acquisition and synchronization, we used four desktop PCs (I7 Intel proces-
sor, eight GB DDR3 RAM, Windows 10x64), one devoted to audio capturing, one devoted
to video capturing, one for the Qualisys system, and one for the Shadow system.

3.2.2.2 Software Platform

Data recordings were handled by using an EyesWeb7 application developed for the data
collection purpose by Professor Gualtiero Volpe and his team. EyesWeb is a software
platform that supports real-time capturing and processing of multimodal data streams. It
handles data synchronization by time-stamping each received frame or sample. Time-
stamping is based on SMPTE time codes8, with the additional possibility to use sub-
sample accuracy. When the hardware supports it, the SMPTE signal is used as a reference
clock. For example, the Qualisys system can receive an SMPTE signal as input and
lock to it. This mechanism is also used by the JVC video cameras. In such cases, the
received samples are automatically timestamped by the capture device. Other devices are
synchronized by EyesWeb, which timestamps each sample when it is received by the host

5https://www.motionshadow.com/
6https://www.qualisys.com/
7http://www.infomus.org/eyesweb_eng.php
8See standard ST 12-1:2014, which is available at the SMPTE website:

https://www.smpte.org/standards/document-index/ST
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Figure 3.4: Position of the 17 IMU Shadow sensors and 17 Qualisys reflective markers
(yellow and blue circles) on a participant and its associated reconstructed skeleton. Sen-
sors circled in blue are positioned at the back of the participant (the two shoulders, the
head, and the hip). Sensors in yellow are at the front of the participant. Green circles
correspond to the two Shadow sensors placed in the shoe of the participant.

computer. By means of these timestamps, EyesWeb can accurately play the data back
with the same timings as they were captured. That is, this process preserves each raw
signal’s native frame rate, when performing multimodal analysis.

In the case of the GAME-ON dataset, the frontal JVC camera was generating the
SMPTE time codes, which were received by the lateral JVC camera, by the audio card
of the PC for audio recordings, by the Qualisys system, and by the PC running the
Shadow recorder. Thus, audio, video, and Qualisys recorders were all locked to the same
SMPTE signal. The Shadow system generates its own timestamps. Shadow data, in-
cluding the timestamp, was received by an ad-hoc C# console application connected to
both the Shadow system and to EyesWeb. Shadow data was thus received by EyesWeb,
and the correspondence between the SMPTE time code and the Shadow timestamp, for
each Shadow sample, was recorded in a separate file, letting us manage synchronization
between Shadow data and other data.

3.2.2.3 Post-processing

Post-processing included several steps. As data was recorded separately for each task,
the first step was to trim the data to only keep the interesting content, discarding the
moments where participants were filling out questionnaires or were waiting for the others
to start a new task. We used ffmpeg9 to trim our audio and video files and discarded
the data that was not tasks-related. Then, the second step consisted of determining what
data got lost for each sensor. Among all the groups (representing 11h36m16s of data) we
had to discard two groups (1h16m48s), representing 11% of the data, due to connectivity

9https://www.ffmpeg.org/
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problems between the C# application and the Shadow system, causing deep gaps in the
data.

We only needed to label one point (i.e., hip or head) with the Qualisys Track Manager
(QTM) software10 to get the drift-corrected translation values for all the other points. We
used the hip marker except for the frames where it was not visible. Concerning the video,
we managed to save 100% of the files, whilst we lost 3% of the audio data, representing
24m16s of content. Missing audio was however available on the backup cameras.

3.2.2.4 Data Visualization

Another EyesWeb application was developed by Professor Gualtiero Volpe and his team
to visually check that the motion capture data concerning the 17 points representing joints
in the participants’ skeletons was coherent (see Figure 3.5). As the data was recorded
and stored in a specific architecture and format, this application automatically selects
and plays the audio, the video, and the motion capture data files belonging to the same
recording session in a synchronized way. Below is the organization of the recorded files:

Date of the session (e.g., 2019-10-28)
audio

Audio files (.aif)
qtm

Qualisys’ Qtm files (.qtm)
shadow

Shadow’s CSV files
Shadow’s text files (timestamps)

video
Video files (.avi)
Video’s text files (timestamps)

We recorded one audio file per participant and per task for a total of 15 audio files per
group. We recorded one QTM file per task for a total of five QTM files per group. Con-
cerning the Shadow data, we stored all the data in a CSV file containing all the sensors’
values per participant per task and one text document per CSV file, storing the shared
timestamps for a total of 30 files. We saved the frontal and lateral video recordings for
each task, but also one text file per recording storing the shared timestamps, for a total of
20 files.

3.2.3 Collecting External Assessments of Cohesion
According to Vinciarelli and Mohammadi (2014), both self- and external assessments
has pros and cons. When a person assesses themselves, they tend to provide ratings to-
ward socially desirable characteristics, especially when the assessment can have negative
consequences. External assessments reflect the behavior that people adopt toward oth-
ers, without necessarily corresponding to their true internal state (Uleman et al., 2008).
Depending on the application, researchers might favor one type of assessment over the

10https://www.qualisys.com/software/qualisys-track-manager
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other one. Furthermore, having access to both assessments could help limit the cons they
introduce, by developing strategies to combine them. Thus, we ran an external annota-
tion campaign for assessing cohesion. This campaign has been approved by the Ethics
Committee of Paris-Saclay. External assessments of cohesion were collected and stored
through a PHP website hosted on Télécom Paris’ servers.

Figure 3.5: Interface of the EyesWeb application for visualizing synchronized data
streams. At the top, paths to the files are provided. At the bottom, the recorded video
is played (left) while the 17 body points are displayed for each person (right).

3.2.3.1 Procedure

First, an introduction to the GRACE project and the purpose of the external annotation
campaign was given to the participants. Then, they had to agree to the terms and condi-
tions of the data collection as well as to give their consent to participate. Before starting
the annotation, they filled, anonymously, demographic information that include: age, gen-
der, and if they understood Italian or not (i.e., the language spoken in the videos). Once
completed, one of the 17 groups available in GAME-ON was randomly selected and its
videos of the five tasks were displayed, in the correct order (i.e., from Task 1 to Task 5),
to the same rater. After watching a video, the participant was asked to fill up the GEQ
questionnaire to process to the next video. Here, we adapted all the items of the GEQ to
allow the assessment of cohesion from an external point of view. For example, the item
“Our team did not work well together” became “The team did not work well together”. It
is only once all the five videos were assessed that the data about their demographics and
answers to the five GEQ questionnaires were stored, anonymously.
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3.2.3.2 Participants

All the participants were recruited through international mailing lists of researchers and by
sharing the campaign with our acquaintances. Their participation was voluntary, anony-
mous, and not remunerated. The only conditions that all the participants met are to un-
derstand English (i.e., the language of the instructions and the questionnaires) and to be
over 18.

In total, we collected annotations of cohesion from 59 participants. Each group has
been assessed by at least three different participants. Ages ranged from 18y to 42y (M =
26.8y, SD = 4.8y) with 45% identified as female (i.e., 27 participants) and 55% identified
as male (i.e., 32 participants). 69% (i.e., 41 participants) did not understand Italian, the
language spoken in all the interactions. This is, however, not problematic since we were
interested in the assessment of cohesion from nonverbal behavior.

3.3 Data Analysis

In this Section, we present an analysis of the data collected through the GEQ question-
naire, both from self- and external assessments of cohesion. The analysis of leadership
and emotion assessments is performed in Chapter 6. We used an alpha level of 0.05 for
all statistical tests.

3.3.1 Analysis of Cohesion from Self-assessments
The following analysis is aimed at understanding and evaluating the dynamics of cohesion
over time, regarding its Social and Task dimensions. In Task 1, we looked at the variations
of cohesion (i.e., increase or decrease) with respect to the baseline obtained from the first
administration of the GEQ questionnaire before starting the data collection. In each of the
other tasks, we looked at the variations with respect to the previous one.

To analyze such variations, we computed two scores of cohesion from the GEQ ques-
tionnaire, for every participant, and for each task. We named these scores as GEQ-Social
and GEQ-Task, respectively. The former relates to the Social dimension and it results
from the sum of the items 1 to 6 reported in Appendix A. The latter one corresponds to
the Task dimension and it results from the sum of the items 7 to 14 reported in Appendix
A. Figure 3.6 shows the box-plots of the GEQ-Social and GEQ-Task scores, respectively.

We first examine the normality of the data by using a Shapiro-Wilk test. The test
shows a significant departure from normality for both the Social dimension (W = 0.88,
p < .001) and the Task dimension (W = 0.91, p < .001). Thus, non-parametric tests are
used for the data analysis.

3.3.1.1 The Social dimension

A non-parametric Friedman test of differences among repeated measures shows a signifi-
cant difference between the GEQ-Social scores across tasks (X2(5) = 57.83, p < .001).
Post-hoc Conover’s tests with a Bonferroni-adjusted alpha level confirm that we managed
to almost control the Social dimension of cohesion accordingly to the sequence in Fig-
ure 3.2. In Task 1 and Task 2, we expected to break the Social cohesion of the group,
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(a) Box-plot of the GEQ-Social scores (b) Box-plot of the GEQ-Task scores

Figure 3.6: Box-plots of the GEQ-Social and GEQ-Task scores, per task. Medians of
GEQ scores are represented by the bold black lines. White dots represent mild outliers,
computed using the interquartile range (IQR) criterion. Significant differences between
tasks are displayed with a “*” (.001 < p < .05) or “**” (p < .001).

developed prior to the data collection as participants were friends. Hence, the expected
variation was from an Increase in Social cohesion (IS) to a Decrease in Social cohesion
(DS). Then, we wanted to observe an increase in Social cohesion in Task 3, Task 4, and
Task 5 (from DS to IS). Post-hoc tests show a significant difference between the Base-
line and all the tasks except Task 1 (p < .001, for all the transitions)11, proving that the
game had an impact on the Social dimension of cohesion after the first Task. Moreover,
as expected, there is a significant decrease of Social cohesion between Task 1 and Task 2
(p < .001, Mdn = 46 for Task 1, and Mdn = 45 for Task 2). There is also a significant
increase of Social cohesion between Task 2 and Task 3 (p < .001, Mdn = 45 for Task 2
and Mdn = 48 for Task 3), and between Task 3 and Task 4 (p < .001, Mdn = 48 for
Task 3, and Mdn = 51 for Task 4), indicating that the expected variation of Social cohe-
sion was indeed obtained. Post-hoc tests also show significant differences between Task 4
and Task 5 (p < .001). Again, the medians increased (Mdn = 51 for Task 4 to Mdn = 53
for Task 5), indicating that this last task can also be considered as IS.

In conclusion, we managed to control the direction of variations of the Social dimen-
sion of cohesion between all the tasks (i.e., from Task 1 to task 5). We, however, did not
manage to break the Social cohesion between the Baseline and Task 1. This is probably
due to the fact that group members shared strong bonds (i.e., they considered themselves
friends).

3.3.1.2 The Task Dimension

A non-parametric Friedman test of differences among repeated measures shows a signif-
icant difference between the GEQ-Task scores across tasks (X2(5) = 36.14, p < .001).
Post-hoc Conover’s tests with a Bonferroni-adjusted alpha level show, however, differ-
ences compared to the expected variations of Task cohesion (see Figure 3.2). We first

11All the p-values presented are already Bonferroni-adjusted.
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expected Task cohesion to decrease (DT) from Baseline to Task 1 and then, to observe
an increase (IT) in Task 2, followed by another decrease in Task 3. Finally, we expected
Task cohesion to increase in Task 4 and Task 5.

Regarding the Task dimension, post-hoc tests show a significant difference between
the Baseline and Task 1, Task 2, and Task 3, respectively (p < .001), proving that the
game had an impact on the Task dimension. There also was not a significant difference
between Task 1 and Task 2 and medians decreased instead of increasing as we expected
(Mdn = 60 for Task 1, Mdn = 56 for Task 2).

Several explanations account for this result. A visual inspection of the video data
showed that the participants did not fully understand the aim of Task 2. We noticed that
the researcher in charge of the session had to remind the instructions more than once
during the other tasks as participants were not following or understanding the guidance.
Also, Task 2 was designed to allow time for participants (4 minutes) to organize the
distribution of the enigmas among them. This was expected to result in an increase in
Task cohesion, but most of the groups rushed to the next phase of the task and randomly
assigned enigmas. As participants were not allowed to interact during the second part of
the task (5 minutes), it is very likely that their answers about the Task dimension were
biased by the decrease in Social cohesion. Also, whereas we were aware that eliciting
multiple changes of one single dimension over a very short period of time (i.e., the Task 1
- Task 2 - Task 3 sequence) was complicated, this indeed revealed more complex than
expected.

In brief, there is only a significant decrease of Task cohesion between the Baseline
and Task 1 (p < .001, Mdn = 66 for the Baseline, Mdn = 60 for Task 1) and a significant
increase of Task cohesion between Task 3 and Task 4 (p = .003, Mdn = 61 for Task 3,
Mdn = 66 for Task 4) as well as between Task 4 and Task 5 (p = .001, Mdn = 66 for
Task 4 and Mdn = 67 for Task 5). Indeed, according to Conover’s post-hoc results, there
is also a significant difference in Task cohesion between Task 2 and Task 4 (p < .001),
and a significant difference between Task 2 and Task 5 (p < .001). GEQ-Task scores in
Task 3 and Task 5 were significantly different (p < .001) too.

We can consider that GEQ-Task scores from the Baseline to Task 3 reflect a down-
ward variation of Task cohesion as the medians significantly decreased. Conversely, there
is an upward variation between Task 3, Task 4, and Task 5, so we can conclude that Task
cohesion increased in Task 4 and Task 5.

In conclusion, we managed to control the direction of variations of the Task dimen-
sion of cohesion over time, from a decrease in the Baseline to the Task 3 followed by an
increase until Task 5. We, however, probably miss-evaluated Task 2 as we were expecting
an increase in Task 2 followed by a decrease in Task 3.

3.3.2 Analysis of Cohesion from External Assessments

3.3.2.1 Reliability of the External Annotations

We first assessed whether external assessments were reliable. Thus, we leveraged the
intra-class correlation (ICC) (Fisher, 1992), one of the most commonly-used statistics for
assessing inter-rater reliability for ordinal variables (Hallgren, 2012).

55



CHAPTER 3 – DATA COLLECTION

The design of our study is not fully crossed and every group has been assessed by a
subset of at least three different raters. We first computed the GEQ-Social-ext and GEQ-
Task-ext scores at each of the five tasks as we did for the self-assessments. Since we
re-used the GEQ questionnaires (adapted to the external annotation), the theoretical min-
imum and maximum scores are identical for the Social (i.e., 6 and 54, respectively) and
Task (i.e., 8 and 72, respectively) dimensions of cohesion. Figure 3.7 displays the box-
plots of the GEQ-Social-ext and GEQ-Task-ext scores, respectively. Then, we summed
the GEQ-Social-ext scores obtained for each of the five tasks. Similarly, we summed the
GEQ-Task-ext scores, hence, producing a cohesion score for each dimension. Based on
these cohesion scores, we computed ICC(1, k) with a consistency definition, following
Shrout and Fleiss (1979)’s convention. We chose such an ICC as groups were annotated
by different sets of randomly selected raters. According to Cicchetti (1994), we obtain a
poor inter-rater agreement of 0.24 for the Social dimension (p = .045) while no signifi-
cant agreement is found for the Task dimension (i.e., p > .05). Such a result is, however,
expected due to the variations of both GEQ-Social-ext and GEQ-Task-ext scores across
the five tasks but also between the groups. Thus, we decided to analyze the inter-rater
agreement for each group.

We choose the ICC(2, k) with a consistency definition. For 12 out of 15 groups, we
obtain a good ICC (i.e., over 0.60, with p < .050) for both the Social and Task dimensions
of cohesion. For the remaining three groups, we reach a significantly good ICC for only
one dimension over the two (i.e., Social cohesion for two of the groups and Task cohesion
for the third group). Thus, we decided to keep them in the analysis. Such results confirm
the reliability of the external annotations. For this reason, we perform a similar analysis
than for the self-assessments of cohesion. External raters, however, could not evaluate
cohesion before the beginning of Task 1 because they did not know the group members.
Thus, we have external assessments from Task 1 to Task 5 from which we computed
the GEQ-Social-ext and the GEQ-Task-ext scores for each group. These are used in the
remaining of the analysis.

We first test the normality of the data by running a Shapiro-Wilk test, for both the
Social and Task dimensions. It shows a significant departure from normality for the Social
dimension (W = 0.96, p < .001) and the Task dimension (W = 0.97, p < .001). Thus,
we perform non-parametric tests.

3.3.2.2 The Social Dimension

First, we run a non-parametric Friedman test of differences among repeated measures
between the GEQ-Social-ext scores across the five tasks. This shows that a significant
difference between these scores exists (X2(4) = 130.58, p < .001). Then a post-hoc
analysis is performed using Conover tests with a Bonferroni-adjusted alpha level, showing
that we almost managed to obtain similar observations than for the self-assessments. They
are, indeed, close to the expected variations of cohesion (as in Table 3.2). Results show
that, for the transition between Task 1 and Task 2, the difference in scores for the Social
dimension (Mdn = 31 for Task 1 and Mdn = 28 for Task 2) is not significant while
expecting a significant decrease. Also, there is no significant difference in score for the
transition between Task 3 and Task 4 despite the increase in Social cohesion expected.
Except for these transitions, Social cohesion significantly increases between Task 2 and
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Task 3 (p < .001, Mdn = 28 for Task 2 and Mdn = 36 for Task 3) and between Task 4
and Task 5 (p = .008, Mdn = 42 for Task 4 and Mdn = 50 for Task 5).

3.3.2.3 The Task Dimension

A non-parametric Friedman test of differences among repeated measures between the
GEQ-Task-ext scores across the five tasks shows a significant difference (X2(4) = 112.01,
p < .001). The following post-hoc analysis using Conover tests with a Bonferroni-
adjusted alpha level reveals a similar pattern than for the Social dimension: from Task 1
to Task 2, there is no significant difference between the scores while there is a signifi-
cant augmentation of Task cohesion between Task 2 and Task 3 (p = .003, Mdn = 42
for Task 2 and Mdn = 51 for Task 3). Again, there is no significant difference in the
scores between Task 3 and Task 4 and, finally, Task cohesion significantly increased, as
expected, between Task 4 and Task 5 (p = .004, Mdn = 53 for Task 4 and Mdn = 60
for Task 5).

These results show that, for both the Social and Task dimensions of cohesion, Task 2
and Task 4 were miss-evaluated by external raters. As interactions were limited in the
second half of Task 2, external raters might have focused on the beginning of the interac-
tion (i.e., during the split of the enigmas) to assess both dimensions. Also, the fact that
no significant difference is found between Task 3 and Task 4 might indicate that, from an
external point of view, the contradictory goals of each group member in Task 3 were not
evidently displayed, hence, making both tasks very similar (i.e., solving a problem as a
group).

(a) Box-plot of the GEQ-Social-ext scores (b) Box-plot of the GEQ-Task-ext scores

Figure 3.7: Box-plots of the GEQ-Social-ext scores and GEQ-Task-ext scores, per task.
Medians of GEQ scores are represented by the bold black lines. White dots represent mild
outliers, computed using the interquartile range (IQR) criterion. Significant differences
between tasks are displayed with a “*” (.001 < p < .05) or “**” (p < .001).
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3.4 Conclusion

T HIS Chapter initially reviewed the main available datasets that are used for
the automated analysis of small groups interaction. It highlighted the need for
a dataset specifically designed for the automated study of cohesion in small
groups of humans. Thus, we collected GAME-ON, a dataset in which 17

groups of three friends interact in the context of an escape game divided in five tasks
explicitly designed for observing variations of the Social and Task dimensions of cohe-
sion according to Severt and Estrada (2015)’s theoretical framework of cohesion.

This Chapter presented the data collection design as well as the various questionnaires
used to assess group members’ cohesion, warmth and competence, competitivity, emo-
tions, leadership, and motivation. Since we modified some items of the questionnaires,
we also confirm the questionnaires’ psychometric properties. Then, the technical setup
is explained in depth to understand the equipment used to collect the data (e.g., hybrid
motion capture setup) and the various software developed to capture, manage and visu-
alize data from different sources. The external annotation campaign ran after processing
and analyzing all the data collected is also presented. Finally, this Chapter provides a first
analysis of the answers from both the self- and external assessment of cohesion to validate
the experimental design for the Social and Task dimensions of cohesion.

58



Chapter 4
Feature Extraction
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T HIS Chapter introduces what are the multimodal nonverbal features used for
the automated analysis of cohesion. Then, it presents the motion capture-based
and audio-based features we extracted. For each feature, motivations and com-
putational details are provided.

I co-designed the motion capture-based features and partially implemented them. I
also designed and implemented the turn-taking-related features.

4.1 What Matter for Automatic Analysis of Cohesion?

During everyday interactions, people coordinate their vocal and visual behavior to convey
messages to others. When people interact, they, consciously or not, adopt various strate-
gies to dynamically adapt to the audience’s reactions (e.g., locating their bodies, assuming
various postures, directing their eyes, moving their hands). Both verbal and nonverbal be-
haviors are co-occurring and are interrelated (Jones and LeBaron, 2002). While verbal
communication plays an important role in social interactions, it is known that a valuable
amount of information is delivered nonverbally (Knapp et al., 2013). Previous studies
on the automated analysis of affective group processes explored verbal and nonverbal
features for predicting, for example, group affect and satisfaction (e.g., Lai and Murray,
2018) or group performance (e.g., Kubasova et al., 2019). They showed that nonverbal
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communication is a more powerful predictor than verbal behavior for the automated anal-
ysis of such group processes.

As of today, the strategy that is the most often employed to extract features that ac-
count for the group behaviors, consists of computing group features by deriving key statis-
tics of their individual features set by, for example, calculating the average, the median,
the maximum, and the minimum values, as well as the variations from the mean for all
individuals or dyads in the group.

In this Section, the features extracted that are generally used for the automated analy-
sis of cohesion are presented. Since most of the existing studies (e.g., Hung and Gatica-
Perez, 2010; Nanninga et al., 2017; Fang and Achard, 2018; Kantharaju et al., 2020) use
datasets that contains video and audio data only (e.g., Carletta et al., 2006; Sanchez-Cortes
et al., 2011b), we present these features according to their media (i.e., video and audio).

4.1.1 Video-based Features
From the video data, various types of features can be extracted. First of all, as in Hung
and Gatica-Perez (2010)’s study, the amount of motion found in a video can be extracted.
Motion features are, indeed, very salient in portraying interpersonal relationships as a lot
of information can be inferred based on the way people move. Based on the motion infor-
mation, features such as the total distance traveled by an individual or by the group (e.g.,
Okada et al., 2015), the average velocity of hands and their synchronization among group
members (e.g., Müller et al., 2018) and head-nodding (e.g., Feese et al., 2012; Kantharaju
et al., 2020; Kantharaju and Pelachaud, 2021) had been extracted.

Also, a large number of features were extracted from the gaze of group members.
For example, Kantharaju et al. (2020) computed the overlapping gaze between any two
participants at a given point in time and the total amount of time spent by each group
member looking at the others. Such features are, indeed, particularly helpful at predicting
turn-taking activities (Jokinen et al., 2013).

In addition, some studies also extracted information about facial expressions (Müller
et al., 2018; Kantharaju et al., 2020; Kantharaju and Pelachaud, 2021). They focus on
various Facial Action Units (FAUs) and extracted both the duration and intensity of the
activated FAUs. These features convey a plethora of affect-related information (the ac-
tivation of cheek raising or lip corner puller units are often associated with happiness
and smile Ekman et al., 1990), hence, are relevant for the automated analysis of cohe-
sion (Kantharaju and Pelachaud, 2021)

Another feature that has been extracted for studying cohesion across studies is the
amount of self- and inter-member synchrony. According to Delaherche et al. (2012), syn-
chrony is “the dynamic and reciprocal adaptation of the temporal structure of behaviors”
between group members. It can be studied using visual (e.g., by analyzing gestures) and
auditory (e.g., by analyzing communication patterns) information. Group members that
work well together and are closer to each other, indeed, gradually adopt each other’s be-
havioral patterns, such as the way they talk, their body pose, and the way they communi-
cate (Lakin and Chartrand, 2003; Campbell, 2008). The concept of synchrony is, however,
complex. Measuring synchrony, hence, can be computed over the whole interaction or on
smaller units of interactions. Multiple approaches had been used to extract such a feature
by, for example, using Pearson correlation to quantify the amount of linear correlation
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among two time series of a similar length from two group members (Zhang et al., 2018),
as well as their amount of mutual information (Hung and Gatica-Perez, 2010). Another
possibility consists in quantifying the distance via dynamic time warping (Müller et al.,
2018).

Features extracted from videos are, however, often found to perform poorly in com-
parison to the ones extracted from audio (e.g., audio, Jayagopi et al., 2009; Hung and
Gatica-Perez, 2010). One possible reason for this is that extracting nonverbal behav-
ior from videos or images might be challenging (e.g., due to occlusions). They, indeed,
contain a lot of information and often require further processing to extract relevant infor-
mation on group activity. Furthermore, video cameras might not be available for privacy
and/or convenience reasons. For example, to capture group behavior without video cam-
eras, Zhang et al. (2018) used sociometric badges to track the number of interactions,
their frequency, and the energy and consistency of each member’s movements as well as
their synchrony. Their results show that these features could be useful for predicting co-
hesion and its Task dimension in particular. Such a device might be a good alternative in
longitudinal studies.

4.1.2 Audio-based Features
Prosody has been extensively studied to automatically study cohesion and related pro-
cesses in group settings. The most common features extracted to describe prosody are
the loudness of the voice, the F0 envelope and contour, the voicing probability and a
set of features detailing voice quality, the differential and pitch jitter and shimmer of the
voice (Nanninga et al., 2017; Lai and Murray, 2018; Murray and Oertel, 2018; Kubasova
et al., 2019). The latter yields information on the laxness or the tenseness of the vocal
tract. Lastly, some studies include the Pulse-code modulation (PCM) into their features
set (Kubasova et al., 2019) to detail the encoding of the digital audio as well as the Line
spectral frequency pairs (LSF/LSP), which are expressed by coefficients representing the
channel transmission (Lai and Murray, 2018). Most of the prosody-related features can
be extracted using the openSMILE software (Eyben et al., 2010) and its various fea-
tures sets (e.g., the Computational Paralinguistics ChallengE or the Geneva Minimalistic
Acoustic Parameter Set, Schuller et al., 2013; Eyben et al., 2015, respectively).

Aside from prosody, the most studied features are the ones related to turn-taking.
Turn-taking can best be analyzed if individual speakers can be identified, either by using
individual microphones to detect separate speech signals or by using automatic source
separation techniques. Turn-taking is often quantified over the participation rate of all
group members by looking at the median pause-to-speech ratio (Lai and Murray, 2018),
the probability to take a turn after any other individual (Müller et al., 2018), the higher-
level participation equality, and turn-taking freedom (Lai and Murray, 2018) with the
expectation that groups with higher cohesion allow for higher equal and unconditional
participation among members. Also, the speaking rate is tracked over the total amount
of pauses versus speech (Hung and Gatica-Perez, 2010) and by counting the number of
syllables per second (Hung and Gatica-Perez, 2010; Nanninga et al., 2017) and the rate
of speaker changes (Jayagopi et al., 2009; Hung and Gatica-Perez, 2010; Lai and Mur-
ray, 2018; Müller et al., 2018). Features related to the time and frequency of overlapping
speech are also computed in various studies (e.g., Jayagopi et al., 2009; Hung and Gatica-

61



CHAPTER 4 – FEATURE EXTRACTION

Perez, 2010; Lai and Murray, 2018) since these are indicative of conflict or backchan-
nels/feedback if the utterances are short. Overlapping speech can be tracked over the
total amount of time (Hung and Gatica-Perez, 2010; Lai and Murray, 2018), the rate and
amount of successful and unsuccessful interruptions (Jayagopi et al., 2009; Hung and
Gatica-Perez, 2010) and the average duration of uninterrupted speech (Lai and Murray,
2018).

As for the video-based features, synchrony can also be extracted from audio. In their
work, Nanninga et al. (2017) modeled the prosodic behavior of the group members as a
mixture of Gaussian and non-parametric distributions over time. In that way, they could
relate the findings over multiple time segments and extract the synchrony over the whole
interaction.

4.2 Multimodal Nonverbal Feature Engineering

In line with previous studies showing the relevance of extracting nonverbal behaviors for
the automated analysis of group processes (e.g., Müller et al., 2018; Kubasova et al., 2019)
and, in particular for cohesion (e.g., Hung and Gatica-Perez, 2010; Nanninga et al., 2017;
Alsulami, 2021), we focus on extracting a set of nonverbal multimodal features character-
izing social interaction. The design of each feature is either inspired by Social Sciences’
insights (e.g., Tannen, 1994; Wallbott, 1998) or by the most relevant features extracted
in previously mentioned studies on the automated analysis of cohesion (e.g., Hung and
Gatica-Perez, 2010; Nanninga et al., 2017) and other affective processes such as group
emotion (e.g., Chao et al., 2015) and stress (e.g., Aigrain et al., 2018). In the following,
we describe how each feature was computed. Features are either extracted from the mo-
tion capture data or from the audio data of the GAME-ON dataset and are computed either
from individuals (I) or for the group as a whole (G). They were extracted on fixed-length
consecutive time windows. The duration of these time windows is determined in Chap-
ter 5. For some of the features, we also applied functionals (i.e., mean, standard deviation,
minimum, maximum, and skewness) to their values over the whole time windows. Thus,
in total, we provide the computational models with an input vector of size 91. Table 4.1
recapitulates all of the features extracted.

4.2.1 Motion Capture Features

As previously mentioned in Chapter 3, motion capture data was collected at 100Hz. To
compute the features, we down-sampled it to 50Hz. The motion capture-based features
are related to proxemics and kinesics as they both play an important role in nonverbal
communication and social interaction (Hans and Hans, 2015).

4.2.1.1 Proxemics Features

Proxemics is the study of how humans use and structure space around them (Hall, 1966).
As empirically demonstrated by Ashton et al. (1980), we expect groups that are standing
closer together to not interpret the presence of others as invading, meaning they have
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Table 4.1: Summary of all the features extracted. They are computed from motion capture
or audio data and are either extracted from the individuals or the group. A “⋆” indicates
that the mean, standard deviation, minimum, maximum, and skewness were applied.

Individual Group

Motion capture

Proxemics
Distance from group barycenter ⋆ Histogram of the interpersonal distances ⋆

Total distance traveled
Maximum of the interpersonal distances ⋆

Time in F-formation ⋆

Kinesics

Longitudinal posture expansion ⋆
Average amount of motion ⋆
Difference ratio of motion ⋆

Lateral posture expansion ⋆
Touches’ duration ⋆

Synchrony among kinetic energies

Occupied volume ⋆
Average amount of hands movements

while not moving ⋆

Kinetic energy ⋆
Difference ratio of hands movements

while not moving ⋆

Auditory

Turn-taking Laughter duration Time of overlapping speech
Total speaking time Average turn duration

GeMAPS

Individual
Pitch F1, F2, F3 relative energies
Jitter H1-H2

Shimmer H1-A3

Loudness
Spectral slope

(0-500Hz and 500-1500Hz)

HNR
Alpha ratio

(50-1000Hz and 1-5kHz)
F1, F2, F3 frequencies

and F1 bandwidth
Hammarberg Index

(0-2kHz and 2-5kHz)

stronger social bonds, and to trigger positive affective reactions. We computed distance-
based features using Equation 4.1:

d(a, b) =

√∑
n∈N

(bn − an)2 (4.1)

For the distances that are computed over the transverse plane (here the XZ-plane, see
Figure 3.4), N = {x, z} and point a have Cartesian coordinates (ax, az) while point b
have coordinates (bx, bz). For the 3D distances, then N = {x, y, z} and point a have
Cartesian coordinates (ax, ay, az) while point b have coordinates (bx, by, bz).
The following distance-based features are then extracted:

• Histogram of the interpersonal distances (G): The 2D Euclidean distances between
each pair of the hips of the participants on the transverse plane were computed
frame by frame. The instantaneous position of the hips of the participants, at a
time t, is indicated as hip_pi(t). Then, the distances are clustered into three bins
to reflect the different categorizations of interpersonal distances introduced by Hall
(1966): Public space (> 3.6m), Social space (in 3.6m and 1.2m) or Personal space
(< 1.2m), respectively (see Figure 4.1 for an example).

• Maximum of the interpersonal distances (G): Based on the interpersonal distances
computed previously, the maximum distance among the three pairs of hips at each
frame is selected. The mean, standard deviation, minimum, maximum, and skew-
ness statistics are then applied over the values obtained over the whole time window.
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Figure 4.1: Example of the different distances computed: (1) interpersonal distances, here
clustered into Social and Personal distances, according to Hall (1966) and (2) distances
from the hip of each group member and the group barycenter.

• Distances from the group barycenter (I): We compute the Euclidean distances over
the transverse plane between the hip of each group member (i.e., hip_pi, hip_pj ,
hip_pk, respectively) and the group barycenter (i.e., bar). Such a group barycenter
corresponds to the barycenter of the triangle shaped by the hips of the three group
members. Distances are computed at each frame, following Equation 4.2 (see a
visual example in Figure 4.1).

d(hip_pi, bar) =
d(hip_pi, hip_pj) + d(hip_pi, hip_pk)

3
(4.2)

With hip_pi ̸= hip_pj ̸= hip_pk, corresponding to the hips of the three persons
composing the group and bar, the barycenter of the group. The mean, standard
deviation, minimum, maximum, and skewness statistics are then applied to all the
distances computed over the time window, for each group member.

• Total distance traveled (I): This feature corresponds to the total length of the trajec-
tory covered by the hip of each group member on the transverse plane during the
whole duration of the time window. Equation 4.1 is used to compute the distance
traveled by a hip between two consecutive frames. This feature is computed for
each group member.

In an effort to capture how a group structures itself in the space, we focus on detecting
specific spatial formations by detecting the facing formation (or F-formation) of a group.
Concretely, an F-formation occurs when two or more group members are engaged in a
joint activity (Kendon, 1990), and denotes a shared-interested in the interaction (Kendon,
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(a) Spaces defined during a F-formation (b) Semi-circular F-formation

Figure 4.2: Figure 4.2a displays the three regions formed by the persons during a F-
formation (i.e., o-space, p-space and r-space), according to Kendon (1990). In particular,
Figure 4.2a and Figure 4.2b show a circular and a semi-circular F-formation, respectively.

2010). According to Kendon (2010), when a group involving at least three persons ar-
ranges itself in an F-formation, the members’ bodies define three regions: the inner o-
space, the ring of p-space, and the surrounding r-space (see Figure 4.2a). Here, we focus
on the 3-person F-Formations. These include circular and semi-circular arrangements
(see Figure 4.2). Below are the features extracted based on the F-Formations detection:

• Time in F-formation (G): It is the amount of time during which a group makes a
circular or a semi-circular F-formation. To automatically detect these F-formations,
a cone is computed from the chest of each member, in the direction in which she is
facing. This is done to approximate the area where the group members’ attention
is directed. An F-Formation is detected when the cones of every group member
intersect (i.e., an o-space exists).

Multiple steps are needed to define each group member’s cone. First, the direction
in which each group member is facing is obtained to compute the cone of attention
in the correct direction. This “facing” vector is obtained, for each group member,
by rotating the vector obtained from the angular displacement of its hip over 1s by
90°. The length of the facing vector is then normalized and multiplied by 3600. In
that way, it does not go beyond the Public space (i.e., 3.60m). Then, starting from
the chest, a cone is constructed around the facing vector, using the Shapely Python
package (Gillies et al., 2007), by rotating it by 1

3
π (i.e., +60°) and by 2

3
π (i.e., 120°),

given an inner angle of 1
3
π, or 60° in the middle.

We check if the cones of the three group members all intersect and if they share
an overlapped area for at least 1s. If both conditions are met, we consider that an
F-Formation exists. In particular, if the group barycenter is in the overlapped area,
we approximate such an arrangement as a circular F-Formation. Otherwise, we
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consider it as a semi-circular one. We, however, did not focus on detecting specific
types of F-Formations as the distinction between them might require a more robust
and precise F-Formation detection method.

Finally, we apply the mean, standard deviation, minimum, maximum, and skewness
statistics to the time in F-formation over the whole time window.

4.2.1.2 Kinesics Features

Kinesics concerns the study of how humans communicate using posture and gesture (Bird-
whistell, 2010). They may indicate active engagement in the task and thus are expected to
have a positive impact on predicting cohesion (Goldin-Meadow and Alibali, 2013). Fea-
tures related to the posture are expected to be particularly associated with dominance and
hierarchy since small differences and big overall expansion are positively correlated to
Social cohesion (Weisfeld and Beresford, 1982) and emotion (Tracy and Robins, 2004).
Thus, we extracted features related to the variations of the posture of each group mem-
ber over the transverse and frontal planes as well as through the volume variations of
the bounding boxes computed around each group member. This bounding box method is
inspired by Piana et al. (2013). Here, are the posture-related features we extracted:

• Longitudinal posture expansion (I): At each second, we first compute the maximum
3D distance possible between one foot to the head (named md_lon) to approximate
each group member’s maximum height size. In detail, md_lon is obtained by com-
puting the distances between the sensors located in the feet, thighs, upper legs, hip,
chest, and head, using Equation 4.1. Then, we normalize the head position (i.e.,
head_pi) over the ordinate axis by md_lon. The minimum between the result ob-
tained by this normalization operation and one is selected as in Equation 4.3:
Let the head point head_pi of group member i have 3D Cartesian coordinates
(head_pi,x, head_pi,y, head_pi,z). The longitudinal expansion for each group mem-
ber i ∈ {1, 2, 3} is given by:

lon_expi = min

(
head_pi,y
md_loni

, 1

)
(4.3)

In this way, we get a value between zero and one, indicative of the longitudinal
expansion of each group member proportional to its size. The mean, standard devi-
ation, minimum, maximum, and skewness statistics are then applied over the entire
time window.

• Lateral posture expansion (I): Similarly to the longitudinal expansion features, we
first compute, at each second, the maximum 3D distance possible between the sen-
sors located from the left hand to the right hand (including sensors on the fore-
arms, arms, and chest) to approximate each person maximum lateral size (named
md_lat). Then, based on the coordinates on the transverse plane of every body
joint (i.e., 17 in total), the smallest enclosing circle is computed using Nayuki’s
Python implementation1 of a variant of the Welzl (1991)’s algorithm. The radius

1https://github.com/nayuki/Nayuki-web-published-code/blob/master/smallest-enclosing-
circle/smallestenclosingcircle.py
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of this circle corresponds to the lateral expansion over the transverse plane. It is
then normalized by md_lat. The lateral posture expansion is obtained following
the same procedure as in Equation 4.3 by replacing head_pi,y by the radius of the
smallest enclosing circle of group member i and by swapping md_loni by md_lati.
As previously, the mean, standard deviation, minimum, maximum, and skewness
statistics are then applied over the entire time window.

• Occupied volume (I): We first approximate the maximum volume that each group
member could possibly occupy (i.e., max_vol) based on its initial position at the
beginning of a task, following Equation 4.4. Each member, indeed, started with
the “T-pose” which consists of standing still and opening up both arms to mimic
the letter “T”. Figure 4.3 shows a person from the GAME-ON dataset doing a
T-pose. Then, at each second, the occupied volume (OccV ol) is computed as in
Equation 4.4:

OccV ol =
1

max_vol

∏
n∈{N}

(max({body_joints})n −min({body_joints})n)

(4.4)
With {body_joints}n the list of the coordinates of all of the 17 body joints from
axis n ∈ N = {x, y, z}. Figure 3.4 shows the location of each body joint. As
for the other expansion-related features, such a volume is computed at each second
and the mean, standard deviation, minimum, maximum, and skewness statistics are
then computed over the entire time window.

Figure 4.3: An example of “T-pose”. This pose enables the calibration of the motion
capture system. Moreover, it was used as a marker for the beginning of a task and to
compute the Occupied Volume feature.

Gestures might be intentional (e.g., touching someone else to give comfort, Sahi et al.,
2021) or unconscious (e.g., moving hands to unconsciously mimicry another person,

67



CHAPTER 4 – FEATURE EXTRACTION

Van Baaren et al., 2009). In both cases, they could be indicative of a large range of
meanings (Calbris, 2011). Since we are interested in features that are specifically relevant
for cohesion, we focus on extracting features related to body movements, with a particu-
lar emphasis on the hands. Hands movements are, indeed, a vector for specific emotions
communication (Wallbott, 1998). The amount of hand movement within the group might
also be indicative of the group engagement in the task. We extract the kinetic energy of
each group member as well as the amount of synchrony between these kinetic energies.
Synchrony refers to the ability of a group to coordinate collective action efficiently and
it has been proved to be positively related to cohesion and cooperation (e.g., Wiltermuth
and Heath, 2009; Gordon et al., 2020). Finally, we are interested in touch-related features
among the group members. Signaling by touch can, indeed, work both at communicating
task-related information (e.g., a tap on the shoulder to require attention) as well as con-
veying social status (Saarinen et al., 2021) and emotions (e.g., hugging another person,
Teyssier et al., 2020). The sensitivity of motion capture allowed us to approximate haptic
communications without the use of tactile sensors. The following gesture-based features
are then extracted:

• Group amount of motion (G): We compute the average change in the position of
each group member’s chest coordinates in the transverse plane over 1s. Then, based
on such values, we compute the average amount of motion among the three group
members by averaging them over 1s and we also compute the difference ratio (i.e.
the difference between the highest and the lowest amount of motion in the group)
over 1s too. Finally, the mean, standard deviation, minimum, maximum, and skew-
ness statistics are then applied over the entire time window on the average amount
of motion and on the difference ratio.

• Group amount of hands movement while not moving (G): Similarly to the group
amount of motion feature, we compute the group amount of hand movement while
not moving as follows: first, we compute the average change in the position of
each group member’s left and right hands coordinates, in the transverse plane over
1s. These values are only computed while the person is not walking. Here, we
approximate that a person is not walking if the distance traveled of the chest joint,
on the transverse plane, is less than 50cm over 1s. This choice was made to only
account for the hands movements that are not provoked by group members’ dis-
placement (i.e., a lot of arm swinging happens during a walk, Collins et al., 2009).
At each second, the mean between both hands movement of the three group mem-
bers is applied.

We also calculate the amount of 3D hands rotation by computing, for each person
and for each of its hands, the distance (accounting for the sign ambiguity) between
its quaternions coordinates at time t and t+1 using the Pyquaternion Python pack-
age2. The mean of the amount of rotation between both hands is obtained for each
group member. Again, these values are only computed when the person is not
walking and the mean of the amount of rotation of each group member’s hands
is obtained. Statistics (i.e., mean, standard deviation, minimum, maximum, and
skewness) are applied to the group amount of hands motion and rotation.

2https://pypi.org/project/pyquaternion/
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• Kinetic energy (I): We compute the total kinetic energy of the whole body (Ktot),
for each group member by summing the kinetic energies (i.e., translational and
rotational) of each of the 17 body joints, as follows in Equation 4.5:

Ktot =
∑
j∈{J}

Ktranslational(j) +Krotational(j)

=
1

2

∑
j∈{J}

(
mjv

2
j + Ijω

2
j

)
(4.5)

Where {J} is the list of the 17 body joints, mj is the mass of body joint j (for the
sake of simplicity, mj is, here, set to one), vj is the velocity of body joint j, Ij ,
the moment of inertia (here, also set to one) and ωj , the angular velocity of body
joint j, using the Euler angles derived from the quaternion coordinates obtained
with the squaternion Python package3. For each group member, the mean, standard
deviation, minimum, maximum, and skewness statistics are then applied over the
whole time window.

• Synchrony among kinetic energies (G): This feature is computed using a modified
version of an algorithm implemented in the SyncPy library (Varni et al., 2015) for
extracting the S-Estimator, a measure of the total synchronization of multiple sig-
nals, relying on the eigenspectrum of the correlation matrix of such signals (Carmeli
et al., 2005). Here, the signals are the kinetic energies of the three group members.
The S-Estimator has a range between zero (for completely independent signals) and
one (for fully synchronized signals). It is computed as follows in Equation 4.6:

S = 1 +

∑K
i=1 λilog(λi)

log(K)
(4.6)

Where K is the number of signals, here set to the number of group members (i.e.,
three), and λi are the normalized eigenvalues of the signals’ correlation matrix. We
use such an S-Estimator as an approximation of the synchrony among the three
group members, at each time window.

• Touch’s duration (G): This feature is based on the 3D distance between the hands
of a group member and the upper body of another group member (it includes the
chest, the head, the hip, and the arms and shoulders). We compute a binary value
every second that indicates whether a touch occurred or not within the group. If one
of the hands’ joints is less than 15cm away from the upper body joints of another
member, we approximate this distance as close enough to be considered as a touch.
We choose a conservative threshold of 15cm for touch detection as sensors are not
located at the fingertips but rather on the top of the hand. Also, such a threshold
enables to capture the touches that occur at areas around the sensor (e.g. touching
a participant’s elbow instead of their forearm). We apply mean, standard devia-
tion, minimum, maximum, and skewness statistics on the time at which touches
occurred, over the whole time window.

3https://pypi.org/project/squaternion
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Once the kinetic energy and posture expansion-related features were computed on a
specific window size, we applied a Savitzky-Golay filter (Savitzky and Golay, 1964) with
a polynomial order of five and a coefficient of three to reduce noise. Figure 4.4 shows
an example of a Savitzky-Golay filter applied on the mean over 20s of the longitudinal
expansion of a group member along the five tasks.

Figure 4.4: Example of denoising using a Savitzky-Golay filter on the average longitudi-
nal expansion of a group member computed over windows of 20s. Here, we display the
feature’s values for the whole interaction (i.e., across the five tasks of GAME-ON), re-
sulting in a sequence of 125 windows. The blue signal is the raw feature while the orange
one is the filtered feature.

4.2.2 Audio Feature Extraction
As detailed in Chapter 3, audio was recorded for each group member at 48kHz using
wireless headsets microphones. Each audio file was inspected and external noises were
reduced to improve the voice quality and clarity using the Audacity software4. Concretely,
during the speaker turn, we used the Noise Reduction feature5 to reduce constant back-
ground sounds by selecting a region in the waveform that is characteristic of the noise to
reduce. Otherwise, we muted the section where the person is not speaking since the au-
dio of the three group members is available separately, hence, avoiding unrelated noises
(e.g., someone else speaking while the person of interest is not). The following audio
features are either automatically extracted using the Geneva Minimalistic Acoustic Pa-
rameter Set (GeMAPS) (Eyben et al., 2015) or using hand-crafted algorithms to compute
features related to turn-taking. In both cases, these features are particularly relevant to
measure interactive behavior and capture affective processes such as group emotion (e.g.,
Ringeval et al., 2016) and cohesion (e.g., Hung and Gatica-Perez, 2010) as well as other
social processes (e.g., leadership, Scherer et al., 2012).

4https://www.audacityteam.org/
5https://manual.audacityteam.org/man/noise_reduction.html
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4.2.2.1 GeMAPS features

Features of the GeMAPS (Eyben et al., 2015) were extracted using the OpenSmile soft-
ware (Eyben et al., 2010). We chose the GeMAPS minimalistic acoustic parameter set
since it has been successfully used in many affect-related prediction tasks (e.g., emotion
prediction, Ringeval et al., 2016; Chao et al., 2015). Moreover, it has been experimen-
tally proven useful for predicting various other processes (e.g., amusement and interest,
Goudbeek and Scherer, 2010). GeMAPS focuses on a set of 18 features. Some are re-
lated to the voice frequency (i.e., pitch, jitter and Formant 1,2 and 3 frequency) and are
particularly relevant for describing vocal affective expressions and, in particular, anger
and sadness (Goudbeek and Scherer, 2010). Others are related to the voice energy and
amplitude (i.e., shimmer, loudness, and harmonics-to-noise ratio) and are pertinent to de-
tect, for example, stress (Weninger et al., 2013). Finally, some features are related to
the spectral balance of the voice (i.e., alpha ratio, Hammarberg index, spectral slope 0-
500Hz and 500-1500Hz, formant 1,2 and 3 relative energy, harmonic difference H1-H2,
and H1-A3) and had been successfully used for the detection of angry speech (Tahon and
Devillers, 2010), and are also important for vocal valence and arousal (Goudbeek and
Scherer, 2010).

As described by Eyben et al. (2015), pitch, harmonic differences, HNR, jitter, and
shimmer are computed from overlapping windows that are 60 ms long and 10 ms apart.
The windows are multiplied with a Gaussian window (with σ = 0.4), in the time do-
main prior to the transformation to the frequency domain with a Fast Fourrier Transform
(FFT). No window function is, however, applied for the jitter and shimmer since they
are computed in the time domain. Loudness, spectral slope, spectral energy proportions,
Formants, Harmonics, Hammarberg Index, and Alpha Ratio are computed from 20 ms
windows that are 10 ms apart and a Hamming function is applied to these windows.
Zero-padding is applied to all windows to the next power-of-2 (samples) frame size in
order to be able to efficiently perform the FFT. Then, all these features are smoothed
over time with a symmetric moving average filter over three windows long. Pitch, jitter,
and shimmer are, however, only smoothed within voiced regions. For each feature, the
mean is applied over the whole time window. In addition, the mean of the Alpha Ratio,
the Hammarberg Index, and the spectral slopes from 0-500 Hz and 500-1500 Hz over all
unvoiced segments are included, yielding a total of 22 individual features.

The brief description of the features computations are taken from the work of Eyben
et al. (2010):

Frequency related features:

• Pitch (I): This feature is based on the fundamental frequency (F0) which is com-
puted via subharmonic summation (SHS) in the spectral domain, as described by Her-
mes (1988). This value is converted from its linear Hz-scale to a logarithmic scale.
Thus, the starting semitone frequency (i.e., semitone 0) starts at 27.5 Hz. Every
value below semitone 1 (i.e., 29.136 Hz) is, however, set to one as zero is reserved
for unvoiced regions.

• Jitter (I): It is computed as the average (over one 60 ms frame) of the absolute
period to period local jitter Jpp(n′) scaled by the average fundamental period length

71



CHAPTER 4 – FEATURE EXTRACTION

as described by Hermes (1988), following Equation 4.7:

Jpp(n
′) = |T0(n

′)− T0(n
′ − 1)| for n′ > 1 (4.7)

With T0(n
′ − 1) and T0(n

′), the length of two consecutive periods n′ − 1 and n′,
respectively. To make the jitter value independent of the underlying pitch period
length, the average of each Jpp value is finally scaled by the average pitch period
length.

• F1 (I), F2 (I) and F3 (I) frequencies and F1 bandwidth (I): All of these four fea-
tures are computed from the roots of Linear Predictor (LP) coefficient polyno-
mial (Makhoul, 1975). Full details of implementation are available in Boersma
and Weenink (2001)’s study.

Energy and amplitude related features:

• Shimmer (I): It is computed as the average (over one 60 ms frame) of the relative
peak amplitude differences, expressed in dB. Similarly to the jitter feature, the local
period to period shimmer is computed as follows in Equation 4.8:

Spp(n
′) = |A(n′)− A(n′ − 1)| for n′ > 1 (4.8)

With the peak to peak amplitude difference A(n′) = xmax,n′−xmin,n′ (i.e., the max-
imum and minimum amplitude of the pitch period n′). Finally, the relative shimmer
values are averaged and normalized by the per frame average peak amplitude.

• Loudness (I): This feature is an estimate of the perceived signal intensity from an au-
ditory spectrum. First, a non-linear Mel-band spectrum is constructed by applying
26 triangular filters equidistantly distributed on the Mel-frequency scale from 20-
8000 Hz to a power spectrum computed from a 25 ms frame. An auditory weighting
with an equal loudness curve is then performed. Then, it is followed by a cubic root
amplitude compression, applied for each band b of the equal loudness weighted
Mel-band power spectrum, resulting in a spectrum that we refer to as the auditory
spectrum. Loudness is then computed as the sum over all the bands of the auditory
spectrum.

• Harmonic-to-Noise Ratio (HNR) (I): It gives the energy ratio of the harmonic signal
parts to the noise signal parts in dB. It is estimated from the short-time autocorrela-
tion function (ACF) on a 60 ms window as the logarithmic ratio of the ACF ampli-
tude at F0 and the total frame energy. As in Schuller (2013)’s study, HNR ratio is
computed following Equation 4.9:

HNRacf,log = 10log10

(
ACFT0

ACF0 − ACFT0

)
(4.9)

Where ACFT0 is the amplitude of the autocorrelation peak at F0 and ACF0 is the
0th ACF coefficient (equivalent to the quadratic frame energy). The logarithmic
HNR value is floored to -100 dB to avoid highly negative and varying values for
low-energy noise.
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Spectral (balance) related features:

• Spectral Slope (0-500 Hz and 500-1500 Hz) (I): These two features are computed
from a logarithmic power spectrum by linear least squares approximation (Tamarit
et al., 2008). Both are extracted over the low- and high-frequency regions (i.e.,
50-1000 Hz and 1-5 kHz, respectively), resulting in four individual features.

• Alpha Ratio (I): It corresponds to the ratio between the energies in the low-frequency
region (i.e., 50-1000 Hz) and in the high-frequency region (i.e., 1-5 kHz). Such ra-
tios are computed every 20ms, resulting in two individual features.

• Hammarberg Index (I): It is the ratio of the strongest energy peak within a particular
region of the spectrum. Here, such an index is computed for the 0-2 kHz and 2-5
kHz regions, respectively. Thus, two individual features are extracted from this
index.

• F1, F2, and F3 relative energies (I): These three individual features are computed
from the linear frequency scale power spectrum by summing the energy of all bins
in the bands 0-500 Hz and 0-1000 Hz, normalized by the total frame energy (i.e.,
the sum of all the power spectrum bins).

• Harmonic Difference (H1-H2 and H1-A3) (I): These two individual features are
computed from the amplitudes of F0 harmonic peaks in the spectrum, normalized
by the amplitude of the F0 spectral peak. Here, the focus is on the ratio of the first to
the second harmonic (i.e., H1-H2) and on the ratio of the first harmonic to the third
formant’s amplitude (i.e., H1-A3). The third formant’s amplitude is estimated as the
ratio of the amplitude of the highest F0 harmonic peak in the range [0.8 ·Fi; 1.2 ·Fi]
to the amplitude of the F0 spectral peak. Fi refers to the centre frequency of the
first formant.

4.2.2.2 Turn-taking Features

The power of using turn-taking related features has been demonstrated by several studies
addressing dominance (e.g., Mast, 2002; Jayagopi et al., 2009), and cohesion in partic-
ular (e.g., Hung and Gatica-Perez, 2010; Nanninga et al., 2017). Thus, we computed
the average turn duration over the group. In an extremely involved conversation, turns
duration of each participant is, indeed, theorized to be approximately equal (Hung and
Gatica-Perez, 2010). Also, we would expect that, in highly cohesive groups, turns will
tend to be shorter as everyone would freely contribute to the conversation. In addition, we
kept track of the total speaking time of each group member as well as the amount of time
in which their speeches overlap. Overlapping of speeches can, indeed, be symptomatic
of conflict (West and Zimmerman, 2015) or be a sign of engagement (Hilton, 2016) and
cooperation (Tannen, 1994) between group members. Finally, the laughter duration per
group member is recorded as it is a highly social process (Provine, 1993) that is a good
indicator of cohesion (Glenn, 2003; Kantharaju and Pelachaud, 2020). Except for the
laughter duration feature that was extracted from the raw audio, we first used the voice
activity detector (VAD) (Eyben et al., 2013) from the Opensmile software (Eyben et al.,
2010) to construct a speech matrix from the three separate audio sources. Such a speech
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matrix indicates who and when someone is speaking, over the whole window duration
(i.e., pi,t = 1 if person i is speaking at time time t, otherwise pi,t = 0). Thus, we can
compute the speaking duration by summing pi,t in the region of interest of the speech ma-
trix. Based on the speaking duration, the average turn duration, the time of overlapping
speech, and the total speaking time were computed. Figure 4.5 shows the features com-
puted from the speech matrix. Below are the computational details of every turn-taking
related feature:

• Average turn duration (G): It is the average duration of all the turns occurring in the
group, during the whole time window. A turn is considered over when a member
stops speaking for at least 1s. Such a value was chosen because a great proportion
of turn transitions fall between 100ms before one stops speaking and 500ms after
the end of one’s turn (Levinson and Torreira, 2015), hence, with 1s, we ensure that
a turn is over.

• Total speaking time (I). This feature is computed, for each group member, as the
total time she is speaking over the whole time window. To avoid counting the small
utterances, we assume that a member is speaking if she speaks for at least 1s. Small
utterances, indeed, usually last between 740ms (e.g., when naming two nouns) and
900ms, the time required for three-word utterances (Schnur et al., 2006).

• Time of overlapping speech (G): It is the total time for which at least two group
members speak simultaneously. This feature is computed over the whole time win-
dow. As opposed to the total speaking time feature, here, we also account for the
short segments in which a few milliseconds of overlap occurs.

• Laughter duration (I): It is computed from the raw audio by using the automatic
laugh detector developed in Ryokai et al. (2018) to automatically extract the laughs
in the window. Once all the laughs are extracted, the total time of laughing is
computed for each member. As a laugh might be brief (a few milliseconds), we do
not put any time constraint on the detected length of the laugh.

Figure 4.5: Example of the turn-taking related features that are computed over a speech
matrix (i.e., total speaking time, average turn duration, and time of overlapping speech).
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4.3 Conclusion

I N this Chapter, we presented the most important nonverbal features used in previous
studies on automated analysis of cohesion. Then, we motivated and provided com-
putational details of the multimodal nonverbal features that we extracted from both
motion capture data and audio data. Features calculated from the motion capture

data are related to kinesics and proxemics, while the ones computed from the audio data
are from the GeMAPS features set and related to turn-taking. For both motion capture
data and audio data, features are either computed from individuals or from the group as a
whole.
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T HIS Chapter presents a collection of computational models of cohesion. The
designs of our models are thought to implement approaches following the four
research axes presented in Chapter 2. First, the aim of the models is presented
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and the settings that are shared by each one of them are explained. These in-
clude the data used as input, the data augmentation procedures, and the labeling strategy.
In addition, we describe how we evaluated and compared the different models among
them. Then, the computational models are presented. Except for the baseline that follows
current literature approaches, they were all designed to investigate at least one of the re-
search axes. In fact, a first model addressing the temporal nature of cohesion (i.e., RA1)
is detailed, followed by a model that, in addition to RA1, investigates the group model-
ing (i.e., RA2) and another model that addresses both RA1 and RA3 (i.e., the interplay
between the Social and Task dimensions of cohesion). Then, a set of four models that
integrate RA1, RA2, and RA3 following different approaches are described. Finally, the
results are discussed.

In particular, I co-designed the labeling strategy and a first version of the baseline
and I designed and implemented all of the other computational models of cohesion. In
addition, I ran all the analysis (see Maman, 2020; Walocha et al., 2020; Maman et al.,
2021b, for the resulting publications).

5.1 Introduction

As of today, there is a limited literature on the automated analysis of cohesion (cf. Chap-
ter 2). Existing computational models show the potential of using machine learning and
deep learning models for such a task and set the path for more complex models, able to
integrate the complexity of cohesion. Thus, following the research axes, we designed and
implemented various computational models that range from a simple but consolidated
state-of-the-art approach to more sophisticated approaches that increasingly address the
temporal nature of cohesion (i.e., RA1), group contributions (i.e., RA2) and the interplay
between the Social and Task dimensions of cohesion (i.e., RA3).

All of our computational models share the same goal which is to predict the dynamics
(i.e. decrease and no-decrease) of cohesion across an interaction. In our configuration,
it means that our models predict the variations of cohesion, focusing on its Social and/or
Task dimensions, for each of the tasks of the escape game.

5.2 Common Settings of the Models

5.2.1 Input Data

We extracted multimodal features for 15 groups of the GAME-ON dataset. As groups
interact for a long duration (i.e., 35mn 45s ±4mn 2s on average to complete the five tasks
of the escape game), all the models, except one, only use the two last minutes of each
task. This choice was motivated by the fact that we use the self-assessments provided
by the group members. As reported in several studies carried out in different contexts,
self-assessments collected through questionnaires are, indeed, likely influenced by the
last recalled behavior (e.g., Lord et al., 1978; Kamper et al., 2010).
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5.2.2 Data Augmentation
To avoid overfitting and make the models more robust to noise, we augment the training
data following two strategies. The first one consists of creating synthetic groups by adding
Gaussian noise to all the features (µ= 0, σ ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05,
0.1, 0.5}), for each group. We tested each value of sigma to investigate the effect of
such settings on the performances of the models. Thus, for each model, we only select
the value of σ that maximizes performances on the validation set. This approach results
in augmenting the data by a factor of four. Also, as some features are computed from
individuals, the second strategy involves creating synthetic groups by computing the six
permutations of the order of the three group members. This strategy augments the training
data by a factor of six. Only the first two models presented in this Chapter do not apply
such a data augmentation, hence, the training data for these models is augmented only by
a factor of four only, whereas other models’ training data is augmented by a factor of 24.

5.2.3 Labeling Strategy
We considered the task of predicting cohesion dynamics as a binary classification problem
(decrease vs no-decrease). Starting from the self-assessments of cohesion rated by each
group member, we built labels for decrease vs no-decrease of the Social and Task dimen-
sions. We first focused on these assessments as they reflect the true internal state of each
group member (Uleman et al., 2008). The labeling strategy is computed as follows. Let’s
consider the GEQ-Social and GEQ-Task scores, computed from the self-assessments of
cohesion in Section 3.3, for two consecutive tasks (e.g., Task 1 and Task 2). This results,
for each cohesion dimension, in six values: two scores for each of the three members.
These scores were then ranked in ascending order to limit the potential bias introduced
by the inter-member variance. Next, for each dimension, we computed, the difference be-
tween the ranks associated with the two GEQ scores of each group member. Finally, we
took the average of these rank differences, resulting in the group score (see Equation 5.1):

GSTx =
1

n

n∑
i=1

(
rank

(i)
Tx − rank

(i)
Tx−1

)
(5.1)

with GSTx, the group score computed for a transition between the tasks Tx and Tx−1

with x ∈ {1, 2, 3, 4, 5} (Transition T0-T1 is equivalent to transition Start-T1 in Table 3.2);
n, the number of group members (here set to 3) and rank(i), the rank corresponding to
the associated GEQ score given by group member i. The group score indicates whether
cohesion decreased or not for a specific dimension. Finally, this GS score was binarized:
a value equal to zero was assigned when the group score was negative (i.e. a decrease in
cohesion occurred), whereas a value equal to one was assigned when the group score was
zero or positive (i.e. no change or an increase in cohesion occurred).

Let’s take an example to illustrate how to obtain the GS score for a specific dimension
(i.e., Social or Task). Table 5.1 provides fictive GEQ scores given by three persons across
two consecutive tasks (here Task 1 and Task 2). These scores range from 23 to 48, hence,
their associated ranks, in ascending order, range from 1 to 6, respectively. Then, the rank
differences are computed, for each person between Task 2 and Task 1. We obtain: -1 for
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Table 5.1: A fictive example of the GEQ scores provided by three persons across two
consecutive tasks as well as their corresponding ranks and ranks difference.

GEQ Score Rank Ranks
differenceTask 1 Task 2 Task 1 Task 2

p1 41 34 4 3 -1
p2 45 24 5 2 -3
p3 48 23 6 1 -5

p1 (i.e., 3-4), -3 for p2 (i.e., 2-5) and -5 for p3 (i.e., 1-6). Thus, the GS score (i.e., the
average rank differences for the group) is -3 which is binarized to 0. This is in line with
the scores decreasing, for each member, across the two tasks.

Overall, labeling data in this way led to an imbalanced distribution for the Social
dimension (i.e., 75% of no-decrease labels vs 25% of decrease labels) and a balanced
distribution for the Task dimension (i.e., 59% of no-decrease labels vs 41% of decrease
labels). The distributions of the labels, for each task and for each dimension, are de-
picted in Figure 5.1. Such an imbalance in the tasks was, however, expected due to how
GAME-ON was conceived (see Table 3.2). The different strategies to address this point
are described in the remaining of the Chapter.

(a) Social partition (overall: 75/25%) (b) Task partition (overall: 59/41%)

Figure 5.1: Labels distributions resulting from our labeling strategy based on self-
assessments of cohesion for the Social and Task dimensions of cohesion (see Figure 5.1a
and Figure 5.1b, respectively). Overall, Social cohesion is imbalanced (i.e., 75% of no-
decrease labels) while Task cohesion is fairly balanced (i.e., 59% of no-decrease labels).
A high imbalance is observed when looking at each task independently.

5.3 Evaluation Methodology and Models’ Comparison

A nested Leave-One-Group-Out (LOGO) cross-validation was carried out to account for
the high diversity of groups. We split the 15 groups into training, validation, and test sets
with ten, four, and one group(s), respectively. Then, we augmented the training set either
by a factor of four (if only the strategy using Gaussian noise is applied), resulting in 40
groups, or by a factor of 24 (if both strategies are applied), leading to 240 groups.
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In the case of a Deep Neural Network architecture, the models were trained up to 500
epochs with a fixed learning rate of 0.001, and the weights of the models were updated at
every mini-batch composed of four groups1. Every 10 epochs, the models were evaluated
on the validation set. In that way, we determined the optimal number of epochs based
on the performances across the five tasks. Then, we retrained the models (merging both
training and validation sets), based on the optimal number of epochs.

For all of the Deep Neural Network architectures, we used the same loss during the
training phase. This loss accounts for the data imbalance by weighting the binary cross-
entropy loss function as in Equation 5.2:

Ldim,Tx = w0,dim,Tx × [ydim,Tx log(ŷdim,Tx)]

+ w1,dim,Tx × [(1− ydim,Tx) log(1− ŷdim,Tx)]
(5.2)

where L is the loss computed for the dimension dim ∈ {Social, Task} at the task Tx

with x ∈ {1, 2, 3, 4, 5}, wi,dim,Tx is the weight for class i (i.e., decrease vs no-decrease)
of the corresponding dimension (i.e., Social or Task cohesion) and task (i.e., from Task 1
to Task 5), computed in an inversely proportional way to the class frequency as in Equa-
tion 5.3, while ydim,Tx and ŷdim,Tx are the target label and the scalar value in the model
output for the corresponding dimension and task, respectively.

wi,dim,Tx =
ng

nc ∗ ni,dim,Tx

(5.3)

where ng is the number of groups; nc, the total number of classes (i.e., decrease and no-
decrease) and ni,dim,Tx , the number of occurrences for class i of dimension dim in task
Tx. The heuristic for computing the class weights in such a way is inspired by King and
Zeng (2001).
Finally, the total loss is computed as in Equation 5.4:

Ltotal = − 1

λ1 + λ2

∑
t∈Tx

(λ1LSocial,t + λ2LTask,t) (5.4)

with λi ∈ {0, 1}. λ1 = 0 if Social cohesion is not predicted by the model while λ2 = 0 if
Task cohesion is not predicted by the model.

Furthermore, to limit the randomness present in the models (e.g., due to the initial-
ization of the weights and biases, and in regularization like dropouts), we followed rec-
ommendations from Colas et al. (2018) that suggest evaluating models on several seeds
(between five and 25 depending on the data and algorithms) to obtain a reliable assess-
ment of the models’ performances. Thus, we used 15 random seeds and we averaged the
performances over the seeds. Performances were evaluated using F1-score as this met-
ric accounts for the label imbalance (e.g., Goutte and Gaussier, 2005; Hammerla et al.,
2016). More specifically, we compute the average F1-score for each of the dimensions
predicted by the model and for each task, independently, across the 15 rounds of the
LOGO and the 15 seeds. Finally, to explore the impact of different values of σ during

1These values were fixed building on preliminary studies.
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the data augmentation, we used a similar value for the 15 rounds of the LOGO. Thus, we
stored the performances on both the validation and test sets so we can select the values of
σ with which we maximized performances on the validation set. Algorithm 1 shows the
pseudo-code for the full LOGO cross-validation procedure for a single seed.

We assessed potential significant differences between the performances through a
computationally intensive randomization test. In detail, we performed a k-sample per-
mutation test using the perm package developed in R (Fay and Shaw, 2010). Such a test
performs exact calculations using the Monte Carlo method during the permutation test. It
is a non-parametric test avoiding the independence assumption between the results being
compared and that is suitable for non-linear measures such as F1-score (Yeh, 2000). The
significance level α was at 0.05. In case of multiple comparisons (i.e. comparisons be-
tween the performances of more than two models or between the performances over the
five tasks in the same model), a post-hoc analysis was carried out using pairwise permu-
tation with an FDR adjusted p-value (Benjamini and Hochberg, 1995). Such a p-value
correction controls the false discovery rate (i.e., the expected proportion of false discov-
eries among the rejected hypotheses), hence, integrating the rate of Type-I errors in the
p-value computation.

All the models presented in this study were developed and trained using Python 3.7
and Tensorflow 2.6 on NVIDIA V100 GPUs.

5.4 Feature Subsets

We grouped the features described in Chapter 4 in different subsets. In that way, we enable
the computational models to differentiate between the features to investigate different
research axes. Thus, we composed the following subsets:

• The “Full features set” (FFS): it takes all of the features, without differentiation.

• The “Individual features set” (IFS): it contains only the features computed from
individuals (e.g., kinetic energy).

• The “Group features set” (GFS): it gathers only the features computed from the
group as a whole (e.g., time of overlapping speech)

• The “Task-specific” (TFS): it regroups all the features that are particularly relevant
for Task cohesion.

• The “Social-specific” (SFS): it contains all the features that are relevant for Social
cohesion.

• The “Common features set” (CFS): it has all the features that are not in SFS nor in
TFS, hence, that are relevant for both dimensions.

IFS and GFS are used by the models addressing RA2, while TFS, SFS, and CFS are
exploited by two models investigating RA3. While composing IFS and GFS is straightfor-
ward, we describe below the methodology to obtain TFS, SFS, and CFS. Such a methodol-
ogy requires a pre-trained model of cohesion predicting both Social and Task dimensions
to run a post-hoc analysis.
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Algorithm 1: Leave-One-Group-Out cross-validation procedure.
Input : Multimodal nonverbal features for the two last minutes of each task
Output: Average F1-score for each dimension and each task
G = the list of the groups used in the model
listσ = {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5}
perfsσ = [] ; //Stores performances for each σ ∈ listσ
foreach σ ∈ listσ do

perfssplit = [] ; //Stores performances at each split

foreach g ∈ G do
test_set = g
validation_set = four random groups in G[∼ test_set]
training_set = remaining groups in G
best_epoch = 0 ; //For determining the best epoch number

M = [] ; //For saving models

F1val = [] ; //For saving F1-scores obtained on

validation_set

augment_data(training_set) ; //x4 or x24

while train_model(training_set) do
Save model m in M every 10 epochs until 500

end
foreach m ∈ M do

Evaluate m on validation_set
Store overall F1-score in F1val

end
Select best_epoch according to the best average F1-score in F1val
augment_data(validation_set)
train_val_set = training_set + validation_set
m = train_model(train_val_set) on best_epoch
Evaluate m on test_set
Store performances in perfssplit

end
Store average performances of perfssplit in perfsσ

end
Select performances in perfsσ that achieved the best average F1-score on the
validation_set
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We exploited Shapley values (Shapley, 1953), a method from coalitional game theory,
to explain the predictions of the pre-trained model on the Social and Task dimension of
cohesion. A prediction can, indeed, be explained by assuming that each feature value, for
a given window, is a “player” in a game where the prediction is the “payout” (i.e., the
prediction of the Social or Task cohesion’s dynamics). Shapley values provide insights on
how the “payout” is distributed among the features (Molnar, 2022), reflecting the marginal
contribution of the features’ value across all possible coalitions. We computed Shapley
values using the SHAP library (Lundberg and Lee, 2017). Thus, the Shapley value expla-
nation is represented as an additive feature attribution method as follows in Equation 5.5:

g(z′) = ϕ0 +
M∑
j=1

ϕjz
′
j (5.5)

where g is the explanation model, z′ ∈ {0, 1}M is the coalition vector, M is the maximum
coalition size and ϕj ∈ R is the feature attribution for a feature j. To compute Shapley
values, the algorithm simulates that only some feature values are playing (i.e., z′j = 1)
and some are not (i.e., z′j = 0).

We computed such Shapley values for each feature, at each round of the LOGO cross-
validation. Then, we averaged the Shapley values of each feature across the five tasks
and the 15 rounds of the LOGO and we selected the features that obtained the highest
ones until we reach 70% of the payout explained. Such a threshold was empirically
determined to ensure that TFS, SFS and CFS were not empty and approximately similar
in size, and was inspired by the method used in factor analysis to determine the validity
of a factor (Hair et al., 2010).

Next, we removed the features that are correlated across the SFS and TFS subsets as
the SHAP algorithm is randomly selecting one of the correlated features when computing
its importance score, meaning that these features could be present in both SFS and TFS.
We considered that two features were strongly correlated when their Pearson correlation
was over 0.70 with a p− value < .05 (Akoglu, 2018). Finally, for the remaining features
of each subset, we also included their strongly correlated features into the subset, as sug-
gested by Molnar (2022). In that way, we ensure that all of the important features were
retained.

While this methodology enabled the discrimination of the important features, results
must be analyzed with care. The obtained Shapley values are, indeed, specific to each
model. In fact, different (and sometimes contradictory) subsets of features were obtained
for our collection of models. Thus, we will clarify what model had been used and what are
the features that constitute SFS, TFS and CFS when describing the results for the models
using these subsets.

5.5 Architectures

5.5.1 A Tree-Based Approach as a Baseline
We used a Random Forest classifier (RFC) as a baseline to predict the dynamics of co-
hesion. As stated by Wainberg et al. (2016), such a classifier is, indeed, one of the most
powerful algorithms for solving binary classification problems.
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According to the structured survey presented in Chapter 2, this architecture repro-
duces, at the Model level, the strategies employed in most of the previous computational
studies of cohesion (e.g., Hung and Gatica-Perez, 2010; Gonzales et al., 2010; Wang et al.,
2012; Nanninga et al., 2017; Fang and Achard, 2018; Zhang et al., 2018; Sharma et al.,
2019; Kantharaju et al., 2020). In fact, RFC takes the FFS as input and processes each
thin slice independently, without modeling the time dependencies between them nor be-
tween the tasks. While such an architecture enables the prediction of the Social and Task
dimensions of cohesion, it does not particularly address the relationships between its di-
mensions. In fact, the same architecture is used to predict both dimensions. Finally, it
does not investigate how to model a group as it processes all the features similarly.

At each round of the LOGO cross-validation, a feature selection algorithm based on
Kolmogorov-Smirnov statistic (Kolmogorov, 1933; Smirnov, 1948) was applied to en-
sure that only features which are potentially meaningful for the model were taken into
account (Nilsson et al., 2007). We used the “ks_2samp” function from the Scipy li-
brary (Virtanen et al., 2020) to only select the features whose distribution, over both the
Social and Task dimensions, are significantly different over the decrease and no-decrease
classes with a significance level of p < 0.01.

In detail, a Gini impurity function to measure the quality of a split was used and the
estimated hyper-parameters on the validation set were: the number of trees (in {100, 200,
300, 400, 500}), the maximum depth of the tree (in {10, 20, 30, 40, 50, 60, 70, 80, 90,
100}), the minimum number of samples required to split an internal node (in {1, 2, 3, 4,
5}), and the minimum number of samples required to be at a leaf node (in {1, 2, 3, 4, 5,
6, 7}).

Finally, RFC was designed to predict cohesion dynamics for each thin slice. A major-
ity voting was then applied over the six predictions of each of the thin slices composing a
particular task to determine the overall prediction of the task, for each dimension. In case
of a tie, we selected the no-decrease class.

5.5.2 A DNN Approach to Integrate Time

To model the time dependencies between the thin slices through a whole interaction (i.e.,
the five tasks of the escape game), we designed the Full Interaction-LSTM (FI-LSTM)
model. This architecture integrates time dependencies between the thin slices with an
LSTM layer. Since it processes thin slices of the whole interaction (i.e., the two last
minutes of each of the five tasks), it also, to a certain extent, take into account the time
dependencies that may exist between the various tasks of the interaction. This is, to the
best of our knowledge, the first attempt to address the dynamics of cohesion.

This DNN architecture integrates the time by inputting the features from the FFS sub-
set to an LSTM layer with 30 units This layer is followed by a Dropout layer with a
dropout rate of 0.2 and by two fully connected (FC) layers with 16 and 8 units, respec-
tively, and a ReLu activation function. FI-LSTM predicts the dynamics of Social and/or
Task cohesion for each of the five tasks of an interaction thanks to a final FC layer with
a Sigmoid activation function and one unit if the model predicts only 1 dimension or two
units if the model predicts both dimensions, in a multilabel setting, and for each task. Fig-
ure 5.2 shows the FI-LSTM architecture. It has 27362 trainable weights in a multilabel
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setting and 27357 when it predicts a single dimension only. Table 5.2 recapitulates the
number of trainable weights for each model that we presented.

Figure 5.2: “Full Interaction-LSTM” (FI-LSTM) architecture. It uses the FFS features
as input and integrates time dependencies between the thin slices of the last 2mn of each
task using an LSTM layer.

5.5.3 A DNN Approach to Integrate Time and Group Modeling
To address RA1 and RA2, we designed the “from Individual to Group" (fItG) architec-
ture (see Figure 5.3 for its architecture). It is rawly inspired by the Team LSTM model
developed by Kasparova et al. (2020) that learns specific patterns of behavior to predict
student engagement, using individual video-based features. FItG uses both IFS and GFS
to learn a higher joint representation of the group behavior, merging individual and group
representations to predict cohesion.

Figure 5.3: “From Individual to Group” (fItG) architecture. It is composed of two mod-
ules: the Individual module takes the IFS features as input and learns a representation of
an individual; the Group module takes the three outputs of the Individual module, con-
catenated with the GFS features.

FItG is composed of two modules. The Individual module takes the IFS subset of
features as input. It is made of three branches, each one composed of an FC layer with a
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ReLu activation function and 50 units, followed by an LSTM layer. This structure enables
the integration of the time dependencies between the thin slices of the interaction. This
module aims at learning a higher-level representation of an individual. The model might
learn undesired patterns related to the order in which each individual is processed by it
across the multiple groups in the training set (e.g., learning a pattern specific to all the first
group members seen by the model). To avoid this issue, we shared the weights of each
layer of the three individual branches of the Individual module (i.e., the FC and LSTM
layers). A common representation is learned, for each layer, as follows in Equation 5.6:

Yi = ϕi

(
n∑

j=1

(WXj)

)
(5.6)

where Yi is the output of layer i, ϕi, the activation function of the layer i, W , the matrix
of parameters common to every group member, and Xj , the input related to the group
member j. As groups are composed of three persons, n was here set equal to three.

The three outputs of the shared individual LSTM layers from the Individual module
are then concatenated with the group features from the GFS subset as input of the Group
module. This module is aimed at learning the temporal dynamics of cohesion from the
group. The module is made of a first FC layer with a ReLu activation function and 64
units, followed by an LSTM layer to integrate the time dependencies. Next, a Dropout
layer with a rate of 0.2 is used to prevent the model from overfitting. This is followed
by another FC layer with a ReLu activation function and 16 units. Finally, as in the FI-
LSTM architecture, the output consists of an FC layer with a Sigmoid activation function
and one or two unit(s) depending on the number of dimensions predicted by the model
(i.e. one unit for each cohesion’s dimension predicted), for each task. fItG has 48152
trainable weights in a multilabel setting, and 48147 when predicting only one dimension
(see Table 5.2).

As for FI-LSTM, this architecture integrates the time dependencies between the thin
slices and the tasks using LSTM layers in both Individual and Group modules. The nov-
elty introduced in fItG, resides in the strategy employed to address group modeling. It
processes individual and group features differently, in related modules. This means that
individual features are first processed and, combined with the group features, inform the
model to learn a group behavior representation.

5.5.4 A DNN Approach to Integrate Time and the Interplay between
Dimensions

We designed the “Specific To Entwined” transformer-based architecture (STE) to address
temporal dependencies as well as the interplay between the Social and Task dimensions of
cohesion (i.e., RA1 and RA3). Its architecture is displayed in Figure 5.4. Here, the main
difference resides in the fact that we use all of the thin slices available in an interaction
(instead of only using the two last minutes of each task) to explore how such an interplay
evolves over time.

In STE, we hypothesize that, at the beginning of an interaction, both dimensions are
distinct while, throughout the interaction, both dimensions converge to become interlaced.

Thus, the architecture is composed of two modules: Specific and Entwined.
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Figure 5.4: “Specific To Entwined” (STE) architecture. It is composed of two modules:
Specific and Entwined. The first one takes SFS and TFS extracted in the first task and the
first half of the second task to learn dimension-specific representations of behavior, while
the second one learns the joint representation from the remaining of the interaction. En-
coders refer to a transformer-encoder module (see Figure 5.5). STE outputs the dynamics
of the Social and Task dimensions of cohesion in a multilabel setting.

The Specific module takes, as input, the SFS and TFS subsets computed over the
thin slices of the first task and half of the second task. Facing a lack of insights with
respect to the way these dimensions interplay over time, we empirically tested different
values for selecting what we consider the beginning of the tasks, ranging from 5% to
90% of the thin slices of each task. Each subset is processed, separately in an encoder
to learn a dimension-specific representation of group behavior. In STE, an encoder refers
to a transformer-encoder block as introduced by Vaswani et al. (2017). Such a block is
composed of a normalization layer, followed by a multi-head attention layer with five
heads of 64 units and a dropout rate of 0.2. The output of the multi-head layer is added
to the input features (referred as add). Then, it has another normalization layer followed
by a 1D convolutional layer with a filter kernel size of five and a ReLu activation function
as well as a dropout layer with a dropout rate of 0.2. Another 1D convolutional layer
with a number of filters equal to the number of input features without activation function
completes the transformer-encoder block. Finally, the block returns the sum of add and
the output of the last convolutional layer. Figure 5.5 describes such a transformer-encoder
block.

Then, the outputs of each encoder of the Specific module are concatenated and pro-
cessed into another encoder on the Entwined module. In parallel, the FFS subset of fea-
tures computed over the second half of the second task through the end of the interaction
goes through a similar encoder in the Entwined module. Next, the outputs of each of the
two last encoders are processed into a 1D average pooling layer. Then, the outputs of the
pooling layers are concatenated and followed by three consecutive FC layers with a ReLu
activation function and 128, 64, and 8 units, respectively.

Finally, as for the previously mentioned architectures in a multilabel setting (e.g.,
RFC, FI-LSTM, and fItG), the output consists of five distinct branches in which an FC
layer with a Sigmoid activation function and two units (i.e., one for predicting each di-
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Figure 5.5: Architecture of the transformer-encoder (Vaswani et al., 2017).

mension), hence enabling the prediction of the Social and Task dynamics of cohesion. In
total STE has 421478 trainable weights (see Table 5.2).

STE integrates time dependencies through transformer-encoders. Furthermore, fea-
tures are processed differently depending on the time in the interaction at which they have
been extracted. The interplay between Social and Task cohesion is also taken into ac-
count as, for each dimension, dimension-specific representations of behavior are learned
from the beginning of the interaction and help the model learn a joint representation of
cohesion, implying that both dimensions mingle as the interaction progresses.

5.5.5 DNN Approaches to Integrate Time, Group Modeling and the
Interplay between Dimensions

The “Common to Specific” (CTS) architecture
In CTS, we explore another assumption with respect to the development of cohesion over
time. We started from the hypothesis that each dimension has its own specificity, es-
pecially at the beginning of the interaction, but also shares similarities with the other
one (i.e., they tend to converge over time). Thus, CTS processes each dimension inde-
pendently and differently (i.e., an extra fully connected layer is added before the output
for the Task dimension) while integrating shared information that is common to both di-
mensions. Such a design implies that both dimensions are, overall, distinct all along the
interaction, as opposed to the assumption taken in the STE architecture. Similarly to STE,
CTS uses the different subsets of features extracted from previous models’ insights (i.e.,
the Social-specific, Task-specific, and Common features subsets ).

CTS is aimed at learning a group behavior representation from the Common features
set to combine it with the ones learned for each dimension, separately. By doing so,
we expect to enrich each representation with complementary information to fully cap-
ture each dimension. Thus, CTS is composed of three modules (i.e., Common, Task and
Social), as depicted in Figure 5.6: the Common module takes the Common features as
inputs. These are processed into an LSTM layer followed by two FC layers with a ReLu
activation function and 32 and 16 units, respectively. The output of this module (i.e., Oc)
is then used in the Social and Task modules. The Social and Task modules use as in-
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Figure 5.6: “Common to Specific” (CTS) architecture. It is composed of three modules
(i.e., Task, Social and Common). Social and Task modules independently process features
from Social- and Task-specific subsets, respectively to learn a dimension-specific repre-
sentation of behavior, enriched by the Common module. CTS predicts, for each task, both
dimensions in a multitask setting.

puts, the Social- and Task-specific features subsets (i.e., SFS and TFS), respectively, and
process individual and group features into four parallel FC layers with a Relu activation
function and 50 units for the individual features and 41 units for the group features. Then,
a pre-trained version of the fItG model is used in each module. In the Social module,
it has been specifically trained to predict Social cohesion only, while in the Task mod-
ule, it was pre-trained on Task cohesion only. The output of the pre-trained fItG is then
concatenated with Oc into an FC layer with a ReLu activation function and eight units in
each module. While in the Social module, the prediction of Social cohesion dynamics, for
each of the five tasks, is done through five parallel Dense layers with a Sigmoid activation
function and one unit straight after the previous FC layer, the Task module contains an
extra layer in each of the five branches used for the prediction that consists of an FC layer
with a ReLu activation function and four units. This extra layer was implemented as we
noticed that the Task dimension was harder to predict than Social cohesion. In total, CTS
has 213705 trainable weights (see Table 5.2).

CTS exploits various subsets as inputs for the different modules and leverages a trans-
fer learning approach by using versions of the fItG pre-trained on both dimensions, in-
dependently. Thus, it is, to the best of our knowledge, the first attempt to integrate the
interplay between dimensions while addressing both time dependencies and group mod-
eling. The methodology to define the features present in the three subsets of features is,
however, highly dependent on the model used to compute the Shapley values. Thus, it
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remains to be seen to what extent CTS generalizes to subsets built from other models.

Inspired by the Social Sciences theories on group development presented in Sec-
tion 2.2.5, we designed three DNN architectures that each integrate one of the three iden-
tified ways to study the interplay between the Social and Task dimensions of cohesion.
These architectures are based on the fItG architecture. Thus, they are, de facto, integrat-
ing time and group modeling.

The “Transfer Between Dimensions” (TBD) architecture
Due to the contradictory views on which of the two dimensions of cohesion emerges first
and affects the other one, we designed two different architectures: TBD-Social (TBD-S)
and TBD-Task (TBD-T). Both TBDs use a transfer learning approach to take advantage
of the behavior representation learned beforehand by a pre-trained model (here the fItG)
for a specific dimension to predict the other one. More specifically, TBD-S predicts the
dynamics of Social cohesion using a pre-trained fItG for Task cohesion, whereas TBD-
T predicts the dynamics of Task cohesion using a pre-trained fItG for Social cohesion.
Figure 5.7 sketches the general architecture of the TBDs.

Figure 5.7: “Transfer Between Dimensions” (TBD) architecture from which TBD-S and
TBD-T are implemented. It is composed of the Base and the Target modules. The Base
module uses a pre-trained version of the fItG to learn a representation of behavior for
a specific dimension (e.g., Social for TBD-T) to inform the Target module that learns a
representation of the group behavior for the target dimension (e.g., Task for TBD-T).

It is composed of two modules: Base and Target detailed in the following. Both TBD-S
and TBD-T have a total of 49139 trainable weights (see Table 5.2).

Leveraging a transfer learning approach, the Base module learns a representation of
the group behavior for a dimension (i.e., Social for TBD-T and Task for TBD-S) from
which a group behavior representation for the targeted dimension (i.e., the predicted di-
mension) will be learned. The Base module takes as input both the Individual and Group
features subsets (i.e., IFS and GFS), and it outputs the representation of the group behav-
ior learned for the specific dimension from the last layer of the Group module of the fItG
model.
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The Target module learns the group behavior representation of the targeted dimension
(i.e., Social or Task cohesion). It consists of an FC layer with a ReLu activation function
and 16 units that takes the output of the Base module as input. This FC layer is followed
by five branches (one for each task). Each branch is composed of two consecutive FC
layers with a ReLu activation function and eight and four units, respectively.

Finally, TBD is designed to predict only one dimension (i.e., the target dimension).
Thus, the output consists of the prediction of the cohesion dynamics for the Social di-
mension (in the case of TBD-S) or the Task dimension (in the case of TBD-T), across the
five tasks. It is composed of five branches (one for each task). Each branch consists of an
FC layer with a Sigmoid activation function and one unit, predicting the dynamics of one
dimension for a specific task.

Both TBDs integrate the Social and Task interplay unidirectionally (i.e., from Social
to Task cohesion with TBD-T and from Task to Social cohesion with TBD-S). They, how-
ever, do not integrate the reciprocal impact of the two dimensions on each other.

The “Transfer Between Dimension-Reciprocal impact” (TBD-RI) architecture
To try to integrate this reciprocity, we designed the TBD-RI architecture. It is built on
top of both the TBD-S and TBD-T architectures, hence, TBD-RI also takes advantage of
a transfer learning approach to learn a group behavior representation for each dimension
before concatenating them and jointly learning the Social and Task cohesion dynamics.
Figure 5.8 shows the TBD-RI architecture. It is composed of two different modules: Di-
mension specific and Reciprocal impact and has 99002 trainable weights (see Table 5.2).

Figure 5.8: The “Transfer Between Dimension-Reciprocal impact” (TBD-RI) architec-
ture. It is built on top of TBD-S and TBD-T and learns, in the Dimension specific module,
a specific representation of the group behavior for each dimension. Both representations
are concatenated and processed by the Reciprocal impact module. As in fItG, the Output
module predicts the Social and Task cohesion dynamics in a multilabel setting.

The Dimension Specific module learns a representation of the group behavior for both
the Social and Task dimensions of cohesion, independently. This module first splits into
two branches (i.e., one for each dimension). Each branch takes both the Individual and
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Group features subsets as input and uses the Base module as well as the first FC layer from
the Target module to learn dimension-specific group behavior representations. Then, the
outputs from each branch are concatenated, resulting in a tensor of shape [B × T, 2× F ]
with B, the batch size (i.e., the number of groups processed per batch), T, the number of
timesteps and F, the size of the features representation of each dimension. This tensor is
then processed by the Reciprocal impact module.

The Reciprocal impact module learns the reciprocal impact that the Social and Task
dimensions of cohesion has on each other over time using as input the concatenation of
the representations learned by the Dimension Specific module. It consists of a first FC
layer with a ReLu activation function and 32 units, followed by another FC layer with a
ReLu activation function and 16 units. Similar to the TBD architectures, there is a split
into five branches (one for each task) with two FC layers with a ReLu activation function
and with eight and four units, respectively, in each branch.

As for RFC, FI-LSTM, and fItG architectures in a multilabel setting, the output of
TBD-RI consists of an FC layer, for each branch, with a Sigmoid activation function
and two units. This enables the TBD-RI to predict the dynamics of the Social and Task
dimensions of cohesion in a multilabel setting.

TBD-S, TBD-T, and TBD-RI all leverage a transfer learning approach based on fItG,
hence, they all address RA1 and RA2 and are specifically designed to tackle RA3.

Table 5.2: Number of trainable weights per model. FI-LSTM and fItG could be designed
for predicting only one dimension, hence, having five trainable weights less than the mul-
tilabel version presented here.

Number of trainable weights
FI-LSTM fItG STE CTS TBD TBD-RI

27362 48152 421478 213705 49139 99002

5.6 Analysis of the Computational Models’ Performances

5.6.1 Window Size for Feature Extraction
All the features described in Chapter 4 can be computed over various lengths of time
windows. It remains to be seen, however, what is the best granularity to automatically
study cohesion dynamics. Thus, we explore the impact of various window sizes (i.e., 5s,
10s, 15s, and 20s) on the performances of RFC in a multilabel setting. Let’s consider
RFC_5, RFC_10, RFC_15, and RFC_20, the Random Forest Classifiers in a multilabel
setting, using features computed on window sizes of 5s, 10s, 15s, and 20s, respectively.
Table 5.3 shows the results obtained by each version of the RFC, for both dimension.

Table 5.3: Summary of the average F1-scores obtained for each dimension by the RFC in
a multilabel settings with features computed on 5s, 10s, 15s, and 20s.

F1-score ±std
RFC_5 RFC_10 RFC_15 RFC_15

Social Task Social Task Social Task Social Task
0.67 ±0.17 0.49 ±0.27 0.60 ±0.11 0.53 ±0.20 0.60 ±0.07 0.50 ±0.24 0.62 ±0.19 0.53 ±0.12
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As for the Social dimension, RFC_5 achieves an average F1-Score, for the five tasks
and over the 15 seeds of 0.67 ±0.17 while RFC_10, RFC_15, and RFC_20 reach 0.60 ±0.11,
0.60 ±0.07 and 0.62 ±0.19, respectively. A permutation test shows a significant differ-
ence between the models (p = .001). A post-hoc analysis indicates that no significant
difference exists between RFC_10 and RFC_15. RFC_20 obtains, however, significantly
better performances than these two (p = .003 for both pairs) but is also significantly out-
performed by RFC_5 (p = .003). Thus, RFC_5 and RFC_20 are the most performing
models for the Social dimension.

Concerning the Task dimension, the average F1-scores obtained are 0.49 ±0.27 for
RFC_5, 0.53 ±0.20 for RFC_10, 0.50 ±0.24 for RFC_15 and 0.53 ±0.12 for RFC_20.
A permutation test shows that a significant difference between these performances exists
(p = .001). A post-hoc analysis reveals that there is no significant difference between
RFC_5 and RFC_10 nor between RFC_10 and RFC_15. Performances are, however,
significantly better for RFC_10 and RFC_20 than for RFC_5 and RFC_15 (p = .006
for each pair). These results indicate that RFC_10 and RFC_20 are the most performing
models for the Task dimension.

Since there is no model outperforming all the other ones in both dimensions, we aver-
age the F1-scores obtained for the Social and Task dimensions to reflect the overall per-
formance of the models. This results in the following performances: RFC_5 and RFC_10
achieve an averaged F1-score of 0.58 ±0.14 and 0.56 ±0.14, while RFC_15 and RFC_20
perform an averaged F1-score of 0.55 ±0.12 and 0.57 ±0.14, respectively. As previ-
ously, a permutation test shows a significant difference between the models (p = .001).
No significant differences are found between RFC_10 and RFC_15 nor between RFC_5
and RFC_20. Performances of RFC_5 are significantly better than RFC_10 and RFC_15
(p = .039 and p = .006, respectively) and similar conclusions are drown for RFC_20 (i.e.,
p = .024 between RFC_20 and RFC_10 and p = .006 between RFC_20 and RFC_15).
Figure 5.9 highlights the results of the RFC models for each dimension and shows the
significant differences between the models.

Figure 5.9: F1-score of the RFC models using various window sizes (i.e., 5s for RF_5, 10s
for RFC_10, 15s for RFC_15, and 20s for RFC_20) for the Social and Task dimensions
of cohesion (in pink and yellow, respectively). P-values of significant differences are
displayed between the models, for the Social and Task dimension, respectively.
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To summarize, results show that, for the Social dimension, the RFC reaches its best
performances with a 5s window size. Performances with 20s window sizes are, however,
significantly better than those of the models using 10s and 15s window sizes. For the
Task dimension, RFC achieves significantly better results with window sizes of 10s and
20s. When averaging the performances of the model for both the Social and Task dimen-
sions of cohesion, there is, however, no significant difference between 5s and 20s window
sizes that both lead to higher performances than models using 10s and 15s window sizes.
Given the fact that no model is significantly better than all the other ones and that the
Task dimension of cohesion is usually harder to predict (e.g., Nanninga et al., 2017), we
hypothesize that a 20s window would be more appropriate. Also, such a duration cor-
roborates previous work on group interaction (Gatica-Perez et al., 2005) and cohesion
perception (Ceccaldi et al., 2019).

5.6.2 Selecting the Reference Model

RFC, FI-LSTM, and fItG architectures are relatively simple compared to STE, CTS and
TBD-S, TBD-T, and TBD-RI that either or both leverage transfer learning and more ad-
vanced approaches to integrate time dependencies and the interplay between dimensions.
Thus, we compare the first three models, in a multilabel setting, to determine the refer-
ence model against which the other ones will be evaluated. Table 5.4 shows the details of
F1-scores for the RFC, FI-LSTM and fItG models, in a multilabel setting.

Table 5.4: Average F1-scores on the 15 seeds for each task and for each dimension for the
RFC, FI-LSTM, and fItG models.

F1-score ±std
RFC FI-LSTM fItG

Social Task Social Task Social Task
T1 0.47 ±0.06 0.42 ±0.06 0.50 ±0.11 0.56 ±0.08 0.52 ±0.10 0.65 ±0.07
T2 0.23 ±0.04 0.35 ±0.03 0.41 ±0.11 0.46 ±0.12 0.51 ±0.13 0.56 ±0.12
T3 0.70 ±0.02 0.54 ±0.03 0.69 ±0.08 0.54 ±0.11 0.65 ±0.07 0.57 ±0.13
T4 0.86 ±0.00 0.61 ±0.02 0.84 ±0.07 0.50 ±0.13 0.87 ±0.04 0.66 ±0.14
T5 0.83 ±0.05 0.73 ±0.00 0.78 ±0.05 0.76 ±0.09 0.80 ±0.04 0.74 ±0.07

Average 0.62 ±0.02 0.53 ±0.02 0.64 ±0.04 0.56 ±0.06 0.67 ±0.03 0.64 ±0.02

The RFC model achieves, for the 15 seeds, an average F1-score of 0.62 ±0.02 for
the Social dimension and 0.53 ±0.02 for the Task dimension. Statistical analysis shows
that there are significant differences in performances for the RFC with respect to the FI-
LSTM and the fItG models for both Social (p = .002) and Task (p = .001) dimensions. A
post-hoc analysis using pairwise permutation t-tests is carried out and shows that both the
FI-LSTM and the fItG models outperform the RFC for the Social (p = .006 for both) and
Task (p = .048 and p = .003, respectively) dimensions. Indeed, for the Social dimension,
the FI-LSTM model reaches an average F1-score across the 15 seeds of 0.64 ±0.04 while
the fItG obtained an average F1-score of 0.67 ±0.03. Such difference in the performances
is, however, not significant. Regarding the Task dimension, the FI-LSTM achieves an
average F1-score of 0.56 ±0.06 while the fItG significantly outperforms it (p = .003),
reaching an average F1-score of 0.64 ±0.02.
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To summarize, the fItG model is the most performing one with a F1-score of 0.67 ±0.03
and 0.64 ±0.02 for the Social and Task dimensions, respectively. Thus, for the remain-
ing of the analysis, the other models will be compared to the performances of the fItG
in a multilabel setting. These results highlight the benefits for a model to integrate the
temporal nature of cohesion and to learn higher representations of both individuals and
group to predict the dynamics of cohesion, especially for the Task dimension. For this
dimension, fItG, indeed, significantly outperforms the other two models, confirming the
importance of modeling groups from both individuals and group perspectives.

5.6.3 Evaluating the Impact of Addressing RA3

5.6.3.1 Uni vs Multilabel

A first approach to address the interplay between the Social and Task dimensions (i.e.,
RA3) consists of using the same architecture to predict each dimension independently
(i.e., unilabel setting) and to compare the performances with the ones from the same
architecture, in a multilabel setting, as suggested in the structured survey in Chapter 2. In
a multilabel setting, both dimensions are, indeed, both predicted from the same node or
layer and equally contribute to cohesion (e.g., by summing the losses of both dimensions
for the DNN architectures), hence, addressing RA3.

RFC, in a multilabel setting, significantly improves the predictions of the Social di-
mension with respect to RFC in a unilabel setting (from 0.61 ±0.01 to 0.62 ±0.02, p =
.044), while it significantly decreases the ones of the Task dimension (from 0.55 ±0.02 to
0.53 ±0.02, p = .002). Concerning FI-LSTM and fItG, no significant difference is found
for the Social dimension. Both unilabel and multilabel settings, indeed, reach similar per-
formances. Multilabel classification, however, significantly improves the predictions of
the fItG, for the Task dimension: it, indeed, achieves 0.64 ±0.02 in a multilabel setting
vs 0.61 ±0.05 in a unilabel setting (p = .042).

These results show that a simple approach to integrating the interplay of the Social
and Task dimensions (i.e., using multilabel classification) partially improves the perfor-
mances of the models predicting a single dimension. In particular, improvements mainly
concern Task cohesion. Such a kind of approach, however, neglects the insights from the
extensive research in Social Sciences that we expect to be beneficial for the model.

5.6.3.2 Exploiting Models’ Insights

Both CTS and STE models exploit different subsets of features as inputs (i.e., TFS, SFS,
and CFS). Since the fItG in a multilabel setting is the reference model, we computed the
Shapley values on this model to build SFS, TFS, and CFS, as described in Section 5.4.
Here below the features that were retained for the subsets:

• SFS: the lateral expansion (skewness), touch’s duration (maximum, average, and
standard deviation), occupied volume (skewness), kinetic energy (minimum, max-
imum, and standard deviation), synchrony of kinetic energies, Public and Social
spaces as well as the harmonic difference (H1-H2 and H1-A3).
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• TFS: the total speaking time, overlap, loudness, shimmer, F1, F2, and F3 relative
energies, F1 bandwidth and frequency, F2 and F3 frequencies, Alpha Ratio and
Hammarberg Index (both in the high-frequency region), Spectral Slopes (0-500 Hz
and 500-1500 Hz) for both low and high-frequency regions, occupied volume (max-
imum and standard deviation), group amount of hands movement while not mov-
ing from translations and rotations (skewness and minimum), time in F-formation
(maximum and standard deviation), total distance traveled, longitudinal (standard
deviation) and latitudinal (average, maximum and minimum) posture expansion,
kinetic energy (skewness and average) and group amount of motion for both the
mean (average, maximum) and group ratio (average).

• CFS: all of the remaining features that are not included in SFS nor TFS, which
consist of laughter duration, average turn duration, pitch, jitter, HNR, alpha ratio
(low-frequency region), Hammarberg Index (high-frequency region), distance from
group barycenter (average, standard deviation, maximum, minimum, and skew-
ness), personal space, maximum of interpersonal distances (average, standard de-
viation, maximum, minimum, and skewness), time in F-formation (average, mini-
mum, and skewness), longitudinal expansion (minimum, maximum, skewness, and
average), lateral expansion (standard deviation), occupied volume (minimum, and
average), group amount of motion (minimum, standard deviation, and skewness),
group amount of hands movement (average, standard deviation, and maximum),
touches’ duration (minimum, and skewness).

In terms of performance, CTS achieves, over the 15 seeds, an average overall F1-score
over the Social and Task dimensions of 0.63 ±0.03 while STE reaches 0.64 ±0.02. A
permutation test shows that there are no significant differences in performances between
these two models and the fItG. Similarly, no significant difference exists between the per-
formances over the Social dimension for CTS (i.e., 0.67 ±0.05), STE (i.e., 0.68 ±0.02),
and fItG (i.e., 0.67 ±0.03). With respect to the Task dimension, a permutation test re-
veals that a significant difference exists between these models (p = .007). A post-hoc
analysis shows that fItG outperforms both CTS (p = .015) and STE (p = .006) but there
is no significant difference between CTS and STE. FItG, indeed, obtains an average F1-
score of 0.64 ±0.02 while CTS and STE achieve 0.59 ±0.04 and 0.60 ±0.03, respectively.

Results show that these approaches do not improve performances with respect to the
fItG. This could be due to multiple reasons. The methodology used to select SFS, TFS, and
CTS features is based on Shapley values of a different model (i.e., fItG). They are, however,
very specific to this model and might not generalize to other models. Only a few features,
indeed, overlap when defining the subsets of features between RFC, FI-LSTM, and fItG.
Thus, it is possible that the subsets of features are not optimal for learning a dimension-
specific representation of behavior. Moreover, as cohesion manifests differently depending
on the groups’ strategies, these features sets might be different for each group and might
change depending on the task. Also, both CTS and STE significantly increase the number
of weights compared to the fItG (i.e., 213705 and 421478, respectively vs 48152). Thus,
overfitting in some tasks is more likely to happen despite the various strategies employed
to avoid it.
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5.6.3.3 Leveraging Social Sciences’ Insights

Performances of TBDs and TBD-RI are first compared against those ones of the fItG.
Then, we compare the performances obtained between each of the tasks. Table 5.5 sum-
marizes all the performances obtained by the fItG in a multilabel setting, TBD-S, TBD-T,
and TBD-RI, for each task and for each dimension. In addition, Figure 5.10 shows the
box-plots of the tasks’ performances over the 15 seeds, for these models.

Table 5.5: Average F1-scores on the 15 seeds for each task, and each dimension, obtained
by fItG, TBD-S, TBD-T, and TBD-RI. For the Social dimension, TBD-RI is the most
performing model while for the Task dimension, TBD-T outperforms other models.

F1-score ±std
fItG TBD-S/T TBD-RI

Social Task Social Task Social Task
T1 0.52 ±0.10 0.65 ±0.07 0.50 ±0.11 0.63 ±0.07 0.56 ±0.10 0.64 ±0.09
T2 0.51 ±0.13 0.56 ±0.12 0.49 ±0.11 0.59 ±0.09 0.61 ±0.08 0.61 ±0.09
T3 0.65 ±0.07 0.57 ±0.13 0.66 ±0.06 0.69 ±0.10 0.69 ±0.06 0.62 ±0.11
T4 0.87 ±0.04 0.66 ±0.14 0.83 ±0.09 0.65 ±0.09 0.85 ±0.05 0.57 ±0.10
T5 0.80 ±0.04 0.74 ±0.07 0.80 ±0.05 0.76 ±0.09 0.79 ±0.05 0.78 ±0.05

Average 0.67 ±0.03 0.64 ±0.02 0.66 ±0.04 0.66 ±0.02 0.70 ±0.03 0.64 ±0.03

Regarding the Social dimension of cohesion, fItG reaches, an average F1-score over
the 15 seeds of 0.67 ±0.03, while TBD-S obtains 0.66 ±0.04 and TBD-RI achieves
0.70 ±0.03. A permutation test shows that there are significant differences in perfor-
mances between these three models (p = .018). A post-hoc analysis reveals that TBD-RI
significantly outperformed both TBD-S (p = .012) and fItG (p = .036). Such an im-
provement in performance is partially explained by the significant improvement in T2
(p = .044). This is, indeed, the only task in which TBD-RI significantly outperforms fItG
(from 0.51 ±0.13 to 0.61 ±0.08). This task remains, however, the hardest task to predict
for all the models. A permutation test run across the five tasks shows a significant dif-
ference between the tasks’ performances for each model (p = .001 for every model). No
significant difference is found between T1 and T2 across the models. These two tasks are,
indeed, the ones for which all the models obtained the lowest prediction performances.
Models achieve significantly better performances on T3 than on T1 (p = .003, for every
model) and on T3 than on T2 (p = .004, p = .003 and p = .013 for the fItG, TBD-S,
and TBD-RI, respectively). T4 and T5 are the tasks in which all the models reach the best
performances (p = .003 between T3-T4 and p = .003 between T3-T5, for every model).

To summarize, TBD-RI is the most performing model for the Social dimension. It
significantly improves fItG and TBD-S performances, especially on T2. Also, there is a
similar pattern of the performances obtained for each task across all the models: T1 and
T2 are those ones for which all the models obtained the lowest performances, T3 is better
predicted than the two first tasks, while the performances achieved in T4 and T5 are the
highest ones.

Concerning the Task dimension, a permutation test shows a significant difference of
performances (p = .014) between fItG (0.64 ±0.02 F1-score), TBD-T (0.66 ±0.02 F1-
score) and TBD-RI (0.64 ±0.03 F1-score). A post-hoc analysis reveals that the difference
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in performances obtained by TBD-T is significant only with respect to the ones of fItG
(p = .018) but not with respect to the ones of TBD-RI. Similarly to the Social dimension,
only one of the worst predicted tasks is significantly improved as opposed to the fItG. In
fact, TBD-T significantly outperforms fItG in T3 (p = .034). TBD-T, indeed, reaches
an average F1-score over the 15 seeds of 0.69 ±0.10 in T3 compared to 0.57 ±0.13
obtained with the fItG. Such improvement indicates a change in the ability of the models
to predict a subset of tasks. Statistical analysis carried out through a permutation test
shows a significant difference between the performances of the five tasks of every model
(p = .001, for the fItG, TBD-T, and TBD-RI, respectively). A post-hoc analysis shows
that, for Task cohesion, T2 is always among the worst predicted tasks: T2 is significantly
worst predicted than T4 (p = .024) and T5 (p = .007) for the fItG, significantly worst
predicted than T3 (p = .025) and T5 (p = .010) for TBD-T, and significantly worst
predicted than T5 for TBD-RI (p = .005). T5 remains significantly better predicted across
all the tasks and models (except for T3 in TBD-T which reaches similar performances).
TBD-RI obtains fewer variations across the tasks. There is only a significant difference
between T5 and the other tasks (p = .005 for each pair of tasks T1-T5, T2-T5, T3-T5,
and T4-T5), while no significant differences are found between the other pairs of tasks,
meaning that performances in T1, T2, T3, and T4 are equivalent.

To summarize, only TBD-T outperforms fItG for the Task dimension, especially due
to the significant improvement in T3. Also, T2 remains among the worst predicted tasks
across all the models, while T5 is always the task in which the models achieve significantly
better F1-scores.
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(a) fItG (b) TBDs

(c) TBD-RI

Figure 5.10: Box-plots of the tasks’ performances over the 15 seeds for fItG, TBD-T and
TBD-S, and TBD-RI. Significant differences between the tasks are marked with a “*".

5.7 Conclusion

I N summary, we first presented the settings that are shared by every computational
model of cohesion and we explained in depth the evaluation procedure and the
statistical analysis we performed to compare models’ performances. All the models
were developed following at least one of the three first research axes presented in

Chapter 2. This includes the integration of time between thin slices (and, by extension,
between tasks) with the FI-LSTM, fItG, STE, CTS, TBD-S, TBD-T, and TBD-RI models;
the integration of group modeling through the fItG, CTS, TBD-S, TBD-T, and TBD-RI
models; and the integration of the interplay between the Social and Task dimensions of
cohesion based on model’ insights with the STE and CTS models, and based on Social
Sciences’ insights with the TBD-S, TBD-T, and TBD-RI models.

Among the simpler models, fItG is the most performing, showing the relevance of in-
tegrating individual and group contributions. Based on this model, we showed that TBD-
RI was the most performing model for the Social dimension. As for the Task dimension,
TBD-T outperforms other models.

To conclude, these results highlight the benefits and the potential of designing com-
putational models of cohesion driven by Social Sciences’ theories and insights.
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T HIS Chapter presents the approaches we implemented to integrate other group
processes (i.e., group emotion and emergent leadership) into computational
models of cohesion. These approaches address the fourth research axis pre-
sented in Chapter 2 (i.e., “Relationships with other group processes”), hence,

helping answering RQ2. First, we present two DNN architectures to explore the links
between cohesion and group emotion, inspired by the Bottom-up and Top-down ap-
proaches (Barsade and Gibson, 1998). Then, we introduce two families of approaches
for studying the relationships between cohesion and emergent leadership. One family
acts at the Input level of the computational model of cohesion, by amplifying differences
between the leader(s)’ features and the ones from their follower(s). The other family
modifies the architecture of the models (i.e., at Model level) by injecting leadership’s
knowledge. All the performances are evaluated against the fItG (see Chapter 5), and the
results are discussed.
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6.1. INTRODUCTION

I designed and implemented the work on the integration of group emotions into com-
putational models of cohesion (see Maman et al., 2021a, for the resulting publication)
and I co-designed both families of approaches for integrating emergent leadership into
DNNs (see Sabry et al., 2021, for the resulting publication).

6.1 Introduction

As stated by Severt and Estrada (2015), various relationships between cohesion and other
group processes may be observed depending on the function (e.g., instrumental), the di-
mension (e.g., Social), or the level of analysis of cohesion (e.g., horizontal) that is being
investigated. Therefore, it is expected that each function, dimension, or level of cohesion
will be associated more or less strongly with different group processes. While group per-
formance has been one of the most commonly studied group outcome of cohesion in the
Social Sciences literature (e.g., Carron et al., 2002; Beal et al., 2003; Evans and Dion,
2012), Severt and Estrada (2015) also suggest examining relationships between cohe-
sion and more specific group processes (e.g., group trust) in different contexts. Thus, we
specifically focus on group emotion and emergent leadership as they are both associated
with the emergence and development of cohesion (e.g., Fox et al., 2000; Xie et al., 2019,
respectively). In this Chapter, multiple approaches integrating how to integrate the links
between cohesion and these group processes are investigated to answer RQ2.

6.2 Cohesion and Emotion

6.2.1 Emotion in Groups
Emotion can either bind or splinter a group (Magee and Tiedens, 2006) and are emer-
gent processes (Scherer, 2009; Coan and Gonzalez, 2015). Thus, they appear crucial for
studying group dynamics. Barsade and Gibson (1998) highlighted two approaches to
characterize group emotions.

Top-down focuses on the group as a whole. This means that group dynamics influence
the feelings and behaviors of members of the group. Following this approach, scholars
in Social Sciences characterized group emotions as (1) forces which shape individual
emotional response (e.g., Le Bon, 1897), (2) social norms (e.g., Gibson, 1997), (3) the
interpersonal glue that keeps groups together (e.g., Festinger et al., 1950) and (4) a display
of group’s maturity and development (e.g., Bales and Strodtbeck, 1951). In this Section,
we follow the first characterization of group emotion.

Bottom-up investigates how the emotions of group members combine to create a group
emotion, approximating the group as the sum of its parts. This approach led researchers
to examine the group through a variety of compositional perspectives such as the mean of
the group’s members, the degree of emotional variance within the group, and the influence
of the most emotionally extreme members of the group.

There is, however, an open debate on defining the best approach. As both the Top-
down and the Bottom-up approaches bring different characterizations of group emo-
tion, Barsade and Gibson (1998) recommend exploring methods following both these
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approaches to have a complete picture of this group process. Furthermore, literature on
cohesion and group emotion highlighted the importance to consider these processes from
both individuals and the group as a whole (Braun et al., 2021).

6.2.2 Links between Cohesion and Group Emotion

The links between cohesion, an affective emergent state, and individual and group emo-
tion had been particularly studied in Social Sciences, showing that cohesion and emotions
influence each other (e.g., Barsade and Gibson, 1998; Lawler et al., 2000; Vanhove and
Herian, 2015). For example, highly cohesive teams likely promote positive emotions
such as happiness among group members. Reciprocally, positive individuals likely create
a climate conducive to cohesion, hence, solidifying and strengthening the group bonds.
This cohesion-emotion relationship has been studied through different angles (e.g., sub-
jective well-being) among various types of groups such as sport groups (García-Calvo
et al., 2014), student project groups (Picazo et al., 2015) or Antarctic station crews (Sarris
and Kirby, 2005). Taken together, these results support the interconnectedness of these
processes.

From a computational perspective, as already mentioned in Chapter 2, a few existing
attempts to take advantage of the cohesion-emotion relationships exist, with the aim of
improving the performances of their computational models on group emotion (i.e., Guo
et al., 2019; Xuan Dang et al., 2019; Sharma et al., 2019; Gavrikov and Savchenko, 2020;
Ghosh et al., 2022; Zou et al., 2020; Tien et al., 2021). These studies, however, did not
specifically investigate how emotion could be related to a specific dimension of cohesion.
Also, despite suggesting new models and methods to jointly predict both cohesion and
emotion, they did not explore how different approaches of group emotion (e.g., Top-down
or Bottom-up approaches) could impact their models’ performances.

In contrast to these studies, we investigate how group emotion affects the Social and
Task dimensions of cohesion. We also explore multiple approaches to characterize group
emotion (i.e., Top-down, Bottom-up) to improve the joint prediction of cohesion and
group emotion.

6.2.3 Experimental Settings

We extended the fItG model for jointly studying both cohesion and group emotion in small
groups interactions. As opposed to RFC and FI-LSTM, fItG has the particularity to model
both the individuals and the group in interrelated modules (see Figure 5.3), hence, making
it suitable for studying the influence of group emotion following the Bottom-up approach
(i.e., individual emotions influence the group one) and the Top-down approach (i.e., group
emotion influence the individuals’ one). FItG performances, however, differ from the
ones presented in Chapter 5 as they were obtained using a previous training methodology
that did not apply the data augmentation strategy consisting of adding Gaussian noise.
Retraining all the models with the latest training methodology was not feasible in the
remaining time of the Thesis.

102



6.2. COHESION AND EMOTION

6.2.3.1 Labeling Strategy for Group Emotion

To build our labels of group emotion, we first analyzed the labels of emotion provided
by each group member over the five tasks (i.e., they could choose among the following
labels: Admiring, Angry, Proud, Ashamed, Happy, and Frustrated. See Section 3.2.1.4
for more details). Figure 6.1a shows the percentages of the six labels of emotion per task.
The two most dominant labels of emotion chosen were “Happy” and “Frustrated”. The
“Other” category includes 19 different labels of emotion provided by the participants. In
the tasks eliciting an increase of cohesion in both dimensions (i.e., Tasks 4 and Task 5),
happiness was the most dominant feeling, corresponding to 34% and 54% of the answers,
respectively. In Task 1, the feeling of happiness was probably influenced by participants’
excitation at the start of the game. The following three other emotions related to Task 1
were, however, chosen: Proud, Frustrated and Admiring. A participant was more likely
to feel proud or frustrated depending on whether she found an object or not. Arguably,
as participants were friends, one would more easily feel admiration toward one’s group
members.

In Task 2 and Task 3, participants felt frustrated (36% and 41% respectively). These
two tasks were intentionally made difficult (or impossible) to complete. In Task 2, how-
ever, we observed a higher diversity in the answers. This is probably related to partici-
pants’ appreciation of the quality of their own performance. We also noticed that happi-
ness was either the first or the second most dominant emotion in every task of the game.

Building upon evidence showing that positively or negatively valenced emotions could
affect cohesion in tasks requiring group decision making or creativity (Barsade and Knight,
2015), independently of the approach investigated (i.e., Top-down or Bottom-up, Vanhove
and Herian, 2015), emotion is here addressed in terms of its valence.

Valence labels are obtained in the following way. We first assigned a valence (positive
or negative) to every emotion picked up by each group member, after each task (more
than one emotion could be provided per group member). Then, for each task and each
group, we summed up +1 if a group member chose an emotion with a positive valence
(e.g., happy) or −1 if a group member chose an emotion with a negative valence (e.g.,
ashamed). Depending on the sign of this sum, we defined the label as “Positive valence”
or “Negative valence”. This labeling strategy resulted in a slightly imbalanced distribution
(61% of Positive valence). Similarly to the cohesion labels, high imbalances for each task
occurred (see Figure 6.1b).

6.2.3.2 DNN Approaches to Integrate the Cohesion-emotion Relationships

We designed two architectures, starting from the fItG: fItG_Bu and fItG_Td, imple-
menting the Bottom-up and Top-down approaches, respectively. In these architectures
group emotion was integrated using multitask learning, taking inspiration from the work
of Parthasarathy and Busso (2017) that designed a framework to jointly predict arousal,
valence and dominance using multitask learning. They proved that a primary task (i.e.,
predicting arousal) could benefit from multitask learning by taking advantage of the
shared representation of the features jointly learned with the secondary tasks (i.e., pre-
dicting valence and dominance). Similarly, according to Vanhove and Herian (2015) stat-
ing that relationships exist between emotion and the Social and the Task dimensions, we
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(a) Distribution of individual emotion labels per task (b) Group emotion partition (overall: 61/39%)

Figure 6.1: Percentages of the six emotion labels provided by each group member (Fig-
ure 6.1a), for the five tasks, and the resulting group emotion labels distributions based
on the valence of group emotion (Figure 6.1b). Overall, 61% of the labels are Positive
valence while 39% are Negative valence. A high imbalance is observed for each task.

expect that the prediction of the dynamics of these cohesion dimensions (taken as the
primary task) will be improved by the knowledge extracted from the prediction of group
emotion (taken as the secondary task).

Figure 6.2 depicts both fItG_Bu (Figure 6.2a) and fItG_Td (Figure 6.2b). In the
fItG_Bu, the three combined outputs from the Individual module are taken as input for the
Bottom-up module. This input feeds two FC layers with a ReLu activation function and
64 and 16 units, respectively. These layers are followed by an FC layer with a Sigmoid
activation function and one unit, for each task. These final layers predict the valence of
group emotion for each task. As valence is predicted from the output of the Individual
module of the fItG, it has, during training, a direct impact on the common shared repre-
sentation of an individual. The Individual module being part of the input of the Group
module, integrating emotion following the Bottom-up approach also affects the group
representation.

In the fItG_Td, the output of the Group module is taken as input. An FC layer with
a Sigmoid activation function and one unit for each of the five tasks is used. In this way,
the group and individual representations will both be impacted by the valence prediction
during back-propagation.

6.2.4 Results and Discussion

As in Chapter 5, we apply the same procedure to compare the performances obtained by
the three architectures and we chose a significance level of α = 0.05 for the statistical
tests. For the sake of brevity, only the significant results are detailed.

104



6.2. COHESION AND EMOTION

(a) fItG_Bu (b) fItG_Td

Figure 6.2: FItG_Bu (Figure 6.2a) predicts group valence emotion after the Individual
module of the fItG and reflects a Bottom-up approach (i.e., individuals influence the
group). FItG_TD (Figure 6.2b) predicts group valence emotion after the Group module of
the fItG and implements a Top-down approach (i.e., the group influences each individual).

As reported in our previous study (Maman et al., 2021a), the fItG model obtains an
average F1-score of 0.69 ±0.03 for the Social dimension and 0.61 ±0.03 for the Task
dimension, over the five tasks and over the 15 seeds. FItG_Bu reaches an average F1-
score of 0.67 ±0.03 for the Social dimension and 0.65 ±0.04 for the Task dimension,
while it achieved 0.65 ±0.03 for valence. FItG_Td, meanwhile, obtained an average F1-
score of 0.68 ±0.03, 0.63 ±0.03 and 0.64 ±0.04 for the Social and Task dimensions and
for the valence, respectively.

A permutation test shows a significant difference in performances between the three
architectures, for the Task dimension only (p = .016). A possible explanation is that pos-
itive emotions maintain a particularly strong relationship with social cohesion (Vanhove
and Herian, 2015), making it more difficult for the model to differentiate these processes.
A post-hoc analysis using pairwise permutation t-tests is also carried out. These tests
reveal that only fItG_Bu reaches significance (p = .012). This improvement in perfor-
mances (from 0.61 ±0.03 to 0.65 ±0.04) indicates that integrating valence in a Bottom-
up fashion helps the model to learn a better representation of an individual, leading to a
more accurate representation of the group as well. This result is in line with the Social
Sciences literature stating that emotions convey attributes such as intentions, and capabil-
ities (Magee and Tiedens, 2006), which are also relevant for the instrumental property of
cohesion and more specifically for the Task dimension (Severt and Estrada, 2015). Ta-
ble 6.1 summarizes the performances of the three architectures for the Social and Task
dimensions of cohesion as well as for the valence of group emotion.

Then, we analyze the details of the tasks’ performances, for each dimension. Task 1
for the Social dimension and Task 4 for the Task dimension are particularly miss-predicted
for the three models (see Figure 6.3). FItG_Bu, however, significantly improves the per-
formances of Task 4 concerning the Task dimension. It obtains a significantly higher
average F1-score (i.e., 0.52 ±0.10 instead of 0.43 ±0.08, p = 0.022). Regarding the
prediction of the secondary task, that is the prediction of valence, the model reaches, on
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average, an F1-score of 0.65 ±0.03. We can explain these performances by the fact that
the models’ selection, for each seed, is based on the highest F1-score of the primary task
(i.e., the prediction of the Social and Task dimensions). This requires a trade-off in terms
of performance for the secondary task. These results indicate that the features contain
enough information to describe both group processes. It also highlights the difficulty to
predict both group processes within the same model.

To summarize, only integrating valence following the Bottom-up approach signifi-
cantly improves the performances of the fItG model for the Task dimension, and espe-
cially for Task 4. This result confirms that jointly predicting the dynamics of cohesion and
the valence helps to learn a shared representation of the features that brings additional
information to the prediction of the Task dimension of cohesion.

Table 6.1: Summary of the average F1-scores over the 15 seeds for the primary and
secondary tasks (predicting cohesion’s dynamics and valence of group emotion, respec-
tively), per task and per dimension for the fItG, the fItG_Bu, and the fItG_Td models.

F1-scores ±std
fItG fItG_Bu fItG_Td

Social Task Social Task Group emotion Social Task Group emotion
T1 0.52 ±0.08 0.69 ±0.06 0.47 ±0.13 0.69 ±0.04 0.76 ±0.05 0.49 ±0.13 0.66 ±0.06 0.78 ±0.07
T2 0.59 ±0.12 0.55 ±0.11 0.58 ±0.11 0.58 ±0.10 0.55 ±0.10 0.60 ±0.15 0.60 ±0.10 0.40 ±0.13
T3 0.61 ±0.06 0.60 ±0.09 0.63 ±0.05 0.67 ±0.12 0.66 ±0.03 0.62 ±0.06 0.65 ±0.08 0.67 ±0.05
T4 0.88 ±0.03 0.43 ±0.08 0.88 ±0.02 0.52 ±0.10 0.47 ±0.08 0.88 ±0.02 0.46 ±0.12 0.57 ±0.08
T5 0.84 ±0.05 0.78 ±0.02 0.81 ±0.05 0.79 ±0.02 0.79 ±0.02 0.80 ±0.04 0.78 ±0.02 0.78 ±0.02

Average 0.69 ±0.03 0.61 ±0.03 0.67 ±0.03 0.65 ±0.04 0.65 ±0.03 0.68 ±0.03 0.63 ±0.03 0.64 ±0.04

(a) Social cohesion (b) Task cohesion

Figure 6.3: Average F1-score per task over the 15 seeds for Social (Figure 6.3a) and Task
(Figure 6.3b) cohesion. FItG is in yellow, fItG_Bu in pink and fItG_Td in purple.
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6.3 Cohesion and Emergent Leadership

6.3.1 Emergent Leadership
There has been increasing attention to examining informal (i.e., horizontal), rather than
formal (i.e., vertical), approaches to leadership over the last several decade (Hanna et al.,
2021). This follows the recent trends of flattening organizational hierarchies and self-
managed teams (e.g., Zaccaro et al., 1991; McClean et al., 2018), leading to new types
of informal leadership such as emergent leadership and shared (or collective) leadership.
These kinds of leadership arise naturally from group interaction, rather than from a higher
authority such as managers (Hanna et al., 2021). While emergent leadership is defined as
“the degree to which an individual with no formal status or authority is perceived by one
or more team members as exhibiting leaderlike influence” (Hanna et al., 2021), shared
leadership is conceptualized as a group dynamic process in which group members inter-
changeably “utilize skills and expertise within a network, effectively distributing elements
of the leadership role as the situation or problem at hand requires” (Friedrich et al., 2009).

In our work, we focus on emergent leadership, an individual emergent state that
evolves over time (Gerpott et al., 2019) and that has been positively linked to cohesion
and team performance (e.g., De Souza and Klein, 1995). Previous studies show that a
team with an emergent leader can outperform teams with a formally designed leader (e.g.,
De Souza and Klein, 1995; Taggar et al., 1999; Spisak et al., 2015). The role of an emer-
gent leader is, however, never settled. It depends on the person’s abilities, the need of
the group, and the team task (Seers, 1989). Thus, the nature of the task impacts its emer-
gence (i.e., an emergent leader may appear in a team for a particular task but not for
another, Taggar et al., 1999).

Despite the complexity of defining emergent leadership, the SSP community started
investigating its automated analysis by collecting several datasets specifically designed
for it such as the ELEA (Sanchez-Cortes et al., 2011a) dataset. This facilitated the devel-
opment of computational models for detecting emergent leadership (e.g., Sanchez-Cortes
et al., 2011b; Beyan et al., 2016a, 2019; Muller and Bulling, 2019) that range from sim-
ple (e.g., using an SVM to predict the most and the least emergent leader in a group from
video only, Beyan et al., 2016b) to more complex approaches (e.g., using unsupervised
learning with both video and audio data, Beyan et al., 2019). Features used in these stud-
ies are related to the speaking activity (e.g., total speaking time, total time of silence) and
the visual focus of attention (e.g., looking someone with no mutual engagement, total time
being looked at). Such features are used in our computational models and are described in
Appendix B. These automated approaches are, however, centered on emergent leadership
only. Such an emergent state has relationships with other group processes (e.g., domi-
nance, Kalma et al., 1993), hence, its automated analysis could benefit from other group
processes as they may simultaneously occur.

6.3.2 Links between Emergent Leadership and Cohesion
Previous studies from Sociology and Psychology reveal that a link between emergent
leadership and cohesion exists (e.g., Light Shields et al., 1997; Stashevsky and Koslowsky,
2006; López-Zafra et al., 2008; Callow et al., 2009; Vincer and Loughead, 2010; Tung and
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Chang, 2011). For example, Callow et al. (2009) empirically show a positive correlation
between some of the emergent leadership behaviors (e.g., fostering acceptance of group
goals, promoting teamwork) and the Social and the Task dimensions of cohesion by an-
alyzing leadership and cohesion questionnaires from 309 clubs standard ultimate Frisbee
players in the United Kingdom. Also, cohesion has been proven to mediate the relation-
ship between emergent leadership and team performance (Dionne et al., 2004; Tung and
Chang, 2011). In particular, Xie et al. (2019) investigated college student group work in
an online class and showed a strong correlation between emergent leadership and cohe-
sion. Yamaguchi and Maehr (2004) also found that emergent leadership leads to stronger
cohesion in elementary classrooms where students collaborate in math activities.

From a computational perspective, there is, however, to the best of our knowledge,
only Wang et al. (2012)’s study (see Chapter 2) that integrates the links between cohesion
and leadership (without differentiating between formal and informal leadership). In their
study, they predicted cohesion based on leadership and (dis)agreement between group
members. This study, however, only uses audio-verbal features with a logistic regression
model and does not take into account the dynamic aspects of both processes. It also does
not explore if their model manages to predict cohesion without leadership, making it hard
to evaluate the impact of the integration of the links between leadership and cohesion.

6.3.3 Labeling Strategy for Emergent Leadership Detection
Since more than one person can exhibit leadership in small groups (Taggar et al., 1999),
we made the assumption that a group of three persons can either be composed of zero,
one or two emergent leaders.

To build our labels for the emergent leadership detection, we considered such a task as
a binary classification problem (i.e., zero means a person is not an emergent leader while
one indicates it is an emergent leader). The procedure to obtain the labels is explained as
follows. First, we define a leadership score for each group member to compare them and
determine whether an emergent leader exists in the group.

As described in Chapter 3, group members provided self- and external assessments of
leadership in a round-robin rating, by answering a set of five questions (see Appendix A,
for the details of the questions). Both these assessments have pros and cons (Vinciarelli
and Mohammadi, 2014). With self-assessment, persons are inclined to judge their perfor-
mance favorably, while external assessment tends to limit such a bias (Koopmans et al.,
2013) but might not reflect the true internal state of the person (Uleman et al., 2008).
Therefore, for each of the five questions, we choose to emphasize the differences between
external and self-assessments of leadership by multiplying the external ratings by 0.4 and
multiplying self-assessments by 0.2. Such values (i.e., 0.2 and 0.4) were empirically cho-
sen so they add up to 1. Then, to compute the score for each of the six items and for each
group member, the self- and external assessments were summed and normalized by six
(i.e., the maximum score possible on the Likert scale).

Based on the five scores obtained (i.e., one for each item) for each task and each
group member, we computed their mean, as it is usually done in automated studies on
leadership, based on self-assessments (e.g., Sanchez-Cortes et al., 2010, 2011a,b). We
also computed their median. In this way, we aim to capture possible disagreement be-
tween group members’ leadership scores, as suggested in the work of Hanna et al. (2021).

108



6.3. COHESION AND EMERGENT LEADERSHIP

Afterward, for both the mean and median scores (i.e., meanL and medL, respectively),
we applied a similar strategy to detect the number of emergent leaders in each group, as
follows.

For each task and each score (i.e., meanL or medL), if the difference between the
minimum and the maximum scores obtained in the group is higher than a threshold of 0.11,
it is indicative of the presence of at least one emergent leader for this particular task. In
this case, we also compute the difference between the scores of the two potential leaders.
If this difference is smaller than a second threshold of 0.051, it means that two emergent
leaders exist for this particular task as they were both perceived almost as influential as
the other leader.

Applying such a strategy to both meanL and medL results in two (potentially differ-
ent) labels distributions. The final label is obtained as follows: for each task and each
group member, if the labels from both distributions are similar, we select it as the final
label. Otherwise, we first test the reliability of the threshold obtained with medL. We,
indeed, noticed that the medL labels distribution was more sensitive to the variations of
thresholds. In fact, a diminution of 0.01 and 0.005 for the first and second thresholds,
respectively, resulted in 8% of different labels. Thus, for such edge cases, the label ob-
tained with meanL is conserved. Otherwise, the label obtained with medL is held. This
labeling strategy results in a slightly imbalanced labels distribution (i.e., 60% of “leaders”
and 40% of “non-leaders”) and was validated by an expert in groups that watched random
samples of videos from the GAME-ON dataset to assess leadership.

6.3.4 Families of Approaches

6.3.4.1 Features Based Leadership

Scholars in Social Psychology state that an emergent leader is the most influential and ac-
tive person in the group, who talks and moves the most (Baird Jr, 1977; Stein and Heller,
1979; Darioly and Mast, 2014). The two following approaches are based on these in-
sights and suggest amplifying the features that characterize emergent leaders. The first
one called Normalization, consists of normalizing the individual features of each group
member regarding the ones of the leader(s). The second one named Weighting, gives a
particular weight to the features that are relevant for describing leaders’ behavior.

Normalization
We amplified the differences between the leader(s) and the follower(s) by normalizing
each individual’s features with respect to the ones of the leader(s). Leaders were iden-
tified based on the labeling strategy previously described in Section 6.3.3. Concretely,
we applied the Min-Max scaling method to each individual feature, taking the minimum
and maximum values from the feature vector(s) of the leader(s), i.e., min(featleader) and
max(featleader), respectively, as follows in Equation 6.1:

X_normi =
Xi −min(featleader)

max(featleader)−min(featleader)
(6.1)

1This threshold was empirically determined.
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Where Xi is the feature vector of the group member i, and X_normi is the same fea-
ture vector Xi normalized according to min(featleader) and max(featleader). In the case
min(featleader) and max(featleader) are not the extremes values for each group member,
it implies that some values of the feature vector of the follower(s) are not in the standard
range of normalization (i.e., between zero and one). For that reason, all the values greater
than one and less than zero were set to one and zero, respectively.

Weighting
For this specific approach, we defined a new subset of features, i.e., the “Leadership
features set” (LFS), obtained from FFS, that is composed of features that are relevant to
studying emergent leaders’ behavior. Table 6.2 shows the features present in LFS. To
constitute such a features set, we took inspiration from the fact that an emergent leader is
perceived by his peers as a dominant person with the most active body language (Gerpott
et al., 2018). In more detail, the emergent leader is perceived as the person who walks and
talks the most, has an active posture, and is also the person who has the longest variation
in the tone of voice and energy (Sanchez-Cortes et al., 2011b; Gerpott et al., 2018). Thus,
the Weighting approach only weights the LFS features before inputting them into the
fItG. In that way, the differences between the features of the leader(s) and its follower(s)
are amplified. We empirically tested multiple weighting values (i.e., from 1.5 to 5) to
observe whether and how amplifying the differences between the emergent leader and its
followers impacted the fItG performances.

Table 6.2: The “Leadership features set” (LFS). Each feature was selected as it is as-
sociated to emergent leadership behavior. In the Weighting approach, these features are
weighted to amplify the differences between emergent leader(s) and follower(s) in the
fItG model. Features with a “⋆” indicates that their functionals were selected.

Features
Motion capture-based Audio-based

Maximum of the interpersonal distances⋆ Pitch
Distances from

group barycenter⋆
Jitter

Shimmer
Total distance traveled Loudness

Occupied volume⋆ HNR
Kinetic energy⋆ Total speaking time

6.3.4.2 Representation Based Leadership

This family of approaches aims to integrate a behavior representation that incorporates
leadership information into a DNN. Here, we specifically focus on modifying fItG’s in-
dividual module since emergent leadership is an individual-level emergent state (Taggar
et al., 1999; Hanna et al., 2021). To this aim, we present two approaches: the first one,
named Extracted from Assessments, directly uses the leadership scores obtained through
the labeling strategy (see Section 6.3.3). The second one, called Automatically Learned,
uses a behavior representation learned by a pre-trained model that predicts emergent lead-
ership. In both approaches, the behavior representation is concatenated with the outputs
of the individual module of the fItG and is the input of another FC layer shared among the
three group members. This extra layer allows the model to learn a higher-level represen-
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tation of the individual behavior that integrates leadership knowledge. Figure 6.4 shows
how both approaches from this family are integrated into the fItG.

Figure 6.4: Integration of the approaches of the Representation Based Leadership family
into the fItG model. The Extracted from Assessments approach is using leadership scores
while the Automatically Learned approach uses a DNN to generate a representation of
behavior based on leadership. Both are integrated into the fItG model after the individual
module through shared FC layers. Each approach is used independently.

Extracted from Assessments
This approach is straightforward and consists of concatenating the leadership scores ob-
tained for each group member, at each task, with the outputs of the fItG’s Individual
module, into the extra shared FC layer. These leadership scores represent the degree of a
person to be perceived as a leader by her peers through the escape game. By providing
such scores, we aim to guide the model in learning a more efficient representation of in-
dividual behaviors that integrates leadership information.

Automatically Learned
Regarding the second approach, the goal is also to inject new leadership information by
creating an automatically generated representation of leadership behavior. To this aim, we
developed and pre-trained a DNN model aimed at predicting emergent leadership for each
individual to be used as a feature extractor Using DNNs as features extractor is, indeed, a
common and robust practice (e.g., Schroff et al., 2015; Liu et al., 2017). We studied the
detection of emergent leadership for each particular individual as a binary classification
problem (i.e., zero means that the individual is not an emergent leader while one indicates
she is an emergent leader). Also, we developed a set of features, grounding on studies
addressing the automated detection of emergent leadership (i.e., Sanchez-Cortes et al.,
2011b; Beyan et al., 2016a,b). These features are either related to the speaking activity
(SA) or related to the Visual Focus Of Attention (VFOA), as presented in Table 6.3.
Details about the computation of these features are provided in Appendix B. SA features
correspond to the speaking length, the interruption between individuals, and the turn-
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Table 6.3: List of nonverbal features used in the Automatically Learned leadership repre-
sentation approach. These features are extracted for each individual, independently, and
are related to their speaking activity (SA) and their visual focus of attention (VFOA).

Features
Speaking activity

Total speaking time when at least one
group member is speaking (Tss) Average of speaking turns duration

Total speaking time when
no one is speaking (Tsn)

Total number of time being
un/successfully interrupted (TIunsuc/TIsuc)

Total number of times a person speaks
first right after another one

Total number of time un/successfully
interrupting other turns (TIOunsuc/TIOsuc)

Ratio between Tss and Tsn Total number of speaking turns (Tst)
Total time of silence (Tsil) Ratio between TIOsuc and TIsuc

Ratio between total
speaking time (Tss+Tsn) and Tsil

Ratio between TIOsuc and Tst
Ratio between TIunsuc and Tst

Visual focus of attention
Looking someone with no ME (LnoME) Total time being looked at

Being looked with no ME (BLnoME) Number of times one initiates a ME
ME with any member Ratio between BLnoME and LnoME

taking of each person, while VFOA features essentially relate to mutual engagement (ME)
that is happening when two persons are looking at each other at the same time.

This set of features serves as the input of the pre-trained leadership model. This
model is composed of a Fully Connected layer with a ReLu activation function and 24
units followed by an LSTM layer and an FC layer with a ReLu activation function and
16 units. The output of this layer is used to (1) make the final prediction (i.e., leader or
not leader) during training, thanks to an FC layer with a Sigmoid activation function and
one unit, and (2) integrate the learned representation of leadership into the fItG model
during the fItG training phase. This pre-trained model is designed to predict if a group
member is an emergent leader for a specific task, independently of her group. We trained
it using a 5-fold cross-validation and a fixed learning rate of 0.0001 coupled with an early
stopping regularization technique on the epochs to avoid over-fitting. Performances were
evaluated using the average F1-score, allowing us to compare them with the fItG. We run
this model on 1000 randomly extracted seeds and we averaged its performances, reaching
an average F1-score of 0.64 ±0.02. Considering the variety of tasks on which the model
is evaluated, such a performance is acceptable. For the purpose of using it as a pre-trained
model in the fItG, we selected the most performing model that reached a 0.71 F1-score.

6.3.5 Results and Discussion

Results presented in this Section aim to show whether and how applying our approaches
improved the fItG performances on both the Social and Task dimensions of cohesion. We
first test if there are significant differences between each family of approaches with respect
to the fItG. Then, the best approach from each family is compared to each other. The same
procedure to compare the performances of the models described in Chapter 5 is applied
in this Section. Performances of the fItG are the same as the ones presented in Section 6.2
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(i.e., an average F1-score of 0.69 ±0.03 for the Social dimension and 0.61 ±0.03 for the
Task dimension, over the tasks and over the 15 seeds).

Regarding the Social dimension of cohesion, there is no significant difference in per-
formances between the approaches from the same family and the fItG. Significant im-
provements of the F1-Score for the Task dimension of cohesion are, however, achieved
for each family of approaches. For the sake of clarity, only the significant results are re-
ported, hence, the remaining of the analysis focuses on the Task dimension of cohesion.
Table 6.4 summarizes the F1-scores obtained by each approach of both families for the
Social and Task dimensions of cohesion.

This result is in line with Social Psychology’s insights stating that, when a team is
working under a time constraint, emergent leaders focus on the task by assigning roles
to the group member and developing strategies to improve team performance (De Souza
and Klein, 1995; Taggar et al., 1999).

Table 6.4: Summary of the average F1-scores for the fItG model and each approach from
the Features Based Leadership and Representation Based Leadership families. Perfor-
mances with a “*” indicate a significant difference with respect to the fItG.

F1-score ±std
Family Approach Social Task
Baseline fItG 0.69 ±0.03 0.61 ±0.03

Features Based
Leadership

Normalization 0.66 ±0.04 0.62 ±0.04
Weighting (by 1.5) 0.68 ±0.03 0.64 ±0.04*

Representation Based
Leadership

Extracted from Assessments 0.67 ±0.04 0.65 ±0.03*
Automatically Learned 0.67 ±0.03 0.67 ±0.04*

6.3.5.1 Approaches from the Features Based Leadership Family

Concerning the Task dimension of cohesion, statistical tests show a significant difference
between this family of approaches and the fItG (p = .010). Post-hoc analysis reveals
that only the Weighting approach significantly improved fItG performances (i.e., from
0.61 ±0.03 to 0.64 ±0.04, p = .006). These findings suggest that amplifying a leader’s
behavior might be beneficial to a certain extent. In fact, the Normalization approach am-
plifies the differences between the leader’s features and its followers’ features by 21%.
This amplification may give the emergent leader(s) too much importance making follow-
ers insignificant to the model. In comparison, the Weighting approach (with a weight set
to 1.5) amplifies the differences by 4%. We empirically confirmed this effect by using
different weights (from 1.5 to 5), which corresponds to an amplification of differences
ranging from 4% to 13%. As displayed by Figure 6.5, amplifying leaders’ behavior sig-
nificantly improves performances (see p-values in the yellow boxes) until a weight of
three (i.e., an amplification of differences of 11%). Augmenting the weight to a higher
value does not improve fItG performances.

These results show that highly amplifying the differences between an emergent leader
and its followers might go against the emergence of an informal leader. Particularly, a
highly amplified leader can be perceived as autocratic (i.e., a leader who has too much
control over the task), which has been shown to be less effective during task comple-
tion (Lewin, 1939).
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Figure 6.5: Average F1-score over 15 randomly extracted seeds of the fItG model, for
the prediction of the Task dimension of cohesion with the Weighting approach. Weights
ranging from one to five are applied to the features. For each weight, p-values (in yellow)
indicate whether or not there is a significant difference with the baseline (weight 1).

6.3.5.2 Approaches from the Representation Based Leadership Family

About this family of approaches, statistical tests show a significant difference in perfor-
mances between both approaches and the fItG for the Task dimension only (p = .001).
Post-hoc analysis reveals that both approaches significantly improve fItG performances.
In particular, the Extracted from Assessments approach based on the computed leader-
ship scores significantly improves fItG from 0.61 ±0.03 to 0.65 ±0.03 (p = .003). The
Automatically Learned approach based on the pre-trained model also reaches a signifi-
cantly better F1-score of 0.67 ±0.04 (p = .003). Finally, this approach also significantly
outperforms the Extracted from Assessments approach (p = .014). These improvements
highlight the benefits of integrating leadership information directly into the computational
model architecture.

Such approaches help the model to learn a high-level representation of individuals
that integrates leadership’s characteristics. Furthermore, the fact that the Automatically
Learned approach outperforms the Extracted from Assessments indicates that the cohe-
sion model is sensitive to the variety of information added. In fact, the Automatically
Learned approach has a leadership representation for each group member and each task
while the Extracted from Assessments approach only provides a representation of leader-
ship that is the same across the tasks, for each person.

6.3.5.3 Comparing Both Families of Approaches

Lastly, we compare the best-performing approaches of each family, for the Task di-
mension of cohesion. The Automatically Learned approach achieves an F1-score of
0.67 ±0.04. Thus, it significantly outperforms the performances of the Weighting ap-
proach that reaches an F1-score of 0.64 ±0.04 (p = .010). This result shows that the
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Representation Based Leadership family of approaches is more effective than the Fea-
tures Based Leadership.

It highlights the benefits of adding extra information for learning a representation of
individuals instead of solely relying on amplifying existing features. The best performing
approach is, indeed, using additional information from other features to automatically
detect emergent leaders. Such an approach helps the fItG learn a more complex repre-
sentation of individuals since it merges two sources of information (instead of one for the
other family of approaches). In that way, the fItG learns new patterns that improve the
prediction of the dynamics of the Social and Task dimensions of cohesion.

6.4 Conclusion

T HIS Chapter presented our work as part of the “Relationships with other group
processes” research axis (i.e., RA4), helping us answering RQ2. In summary,
we first investigated the relationships between cohesion and group emotion (ad-
dressed as its valence), by introducing fItG_Bu and fItG_Td, two DNN archi-

tectures based on the fItG, that respectively implement the Bottom-up and Top-down ap-
proaches for characterizing group emotion. We showed that only integrating emotion
following the Bottom-up approach significantly improved the performances of the fItG
model for the Task dimension. This result corroborates previous findings with respect to
the link between emotions and Task cohesion in particular (Vanhove and Herian, 2015).

As for the relationships between cohesion and emergent leadership, we introduced
two families of approaches to integrate leadership information into DNN architectures
designed for automatically studying cohesion. The first one focuses on amplifying lead-
ers’ features to increase the gap with their follower(s). The second one injects additional
leadership information into the architecture to help the model learn a representation of be-
havior that takes such relationships with cohesion into account. Similarly, results showed
that these approaches were only improving performances for the Task dimension of co-
hesion. Due to the nature of the interaction (i.e., collaborating under a time constraint), it
is also in line with Social Psychology’s insights regarding the emergence of task-focused
leaders (De Souza and Klein, 1995; Taggar et al., 1999). Also, the most efficient approach
consists of injecting a leadership representation based on leadership-specific features in
the cohesion model, hence, underlining the importance of extracting diverse behavioral
information.

To conclude, both works highlight the benefits of integrating other processes into com-
putational models of cohesion and show the potential of implementing strategies follow-
ing the “Relationships with other processes” research axis.
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I N the work presented in this Thesis, we contributed to the development of com-
putational models of cohesion. Their architectures were designed following four
research axes that were identified through a survey of the Social Sciences’ liter-
ature on emergent states, and cohesion. In particular, our computational models

range from a simple but consolidated state-of-the-art approach to more sophisticated ap-
proaches that increasingly address the temporal nature of cohesion, the group modeling,
the interplay between its Social and Task dimensions, and the links with other group pro-
cesses.

In this Chapter we conclude this Thesis by summarizing the main contributions, iden-
tifying the limitations of this work, and suggesting future work from both short- and
long-term perspectives.
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7.1 Summary of Contributions

First contribution: A structured survey on cohesion for supporting the automated anal-
ysis of cohesion in small groups interactions.

During the first phase of our work, we analyzed the Social Sciences literature and we
identified multiple challenges specific to the study of cohesion. Four research axes (RA)
stemmed from this analysis. We built a structured survey for supporting the automated
analysis of cohesion around them. The four research axes are the following ones:

RA1: The temporal nature of cohesion

RA2: The group modeling

RA3: The interplay between its dimensions

RA4: The relationships with other group processes

Inspired by the “Input–Process–Output” (IPO) theoretical framework (Hackman and
Morris, 1975) for conceptualizing teams in Social Sciences, we clustered the approaches
employed in the literature on the automated analysis of cohesion according to the follow-
ing two criteria: the research axis that they address and the level at which they are applied
(i.e., Input, Model or Output) in the computational model of cohesion (see Figure 2.6).
In addition, we also introduced approaches that are, in our opinion, worth investigating.
This structured survey helped us organizing our work and served as a basis for designing
our computational models of cohesion.

Second contribution: Multimodal dataset for the automated cohesion analysis.

To the best of our knowledge, at the time of the data collection, there was no existing
dataset explicitly addressing cohesion. Thus, we collected GAME-ON (Group Analysis
of Multimodal Expression of cohesiON), a multimodal dataset specifically designed for
the study of cohesion dynamics. It is composed of more than 11 hours of video, audio
and motion capture data from the interaction of 17 groups of three friends playing an
escape game. The escape game was thought to elicit variations of the Social and Task
dimensions of cohesion across five tasks that require different skills to solve a murder
(i.e., finding the murderer, its weapon, and the location of the murder). In addition, we
also collected repetitive self-assessments (before and after each task) of cohesion and
other group processes such as leadership and emotion as well as external assessments of
cohesion.

Such a dataset enables the automated study of cohesion through the four research axes
previously mentioned. It, indeed, elicited variations, for multiple groups, of the Social and
Task dimensions of cohesion, an affective group emergent state, over time (RA1, RA2,
and RA3). In addition to the self- and external assessments of cohesion, it also contains
self-assessments of diverse group processes such as leadership and emotion. Thus, facili-
tating the study of the relationships between cohesion and other group processes (RA4).
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Third contribution: Design and implementation of computational models of cohesion.

We designed and implemented a set of computational models of cohesion that gradually
address the four research axes. First, we showed a Random Forest classifier, following
the approaches employed in the current literature on the automated analysis of cohesion.
Then, we explicitly investigated the first research axis with the FI-LSTM model and the
first two research axes with the fItG model. Analytical results show that fItG is the most
performing model. Moreover, we designed more complex approaches based on it to ad-
dress RA3. In fact, we implemented STE and CTS based on an approach inspired by
coalitional game theory. These models, however, did not significantly improved fItG’s
performances. Also, inspired by Social Sciences’ insights on the way the Social and Task
dimensions of cohesion interplay over time, we built three additional DNNs architecture
leveraging a transfer learning approach that each reflects a different theory regarding the
way the Social and Task dimensions interplay. In particular, TBD-S assumes that Task co-
hesion sets the stage for Social cohesion while TBD-T suggests the opposite (i.e., Social
cohesion informs Task cohesion). TBD-RI integrates the reciprocal interplay of these two
dimensions over time. TBD-T and TBD-RI are the most performing models with respect
to the Task and Social dimensions, respectively. Finally, we integrated the link between
cohesion and emotion (i.e., RA4) into the fItG architecture. We designed two approaches
to characterize group emotion, that are grounded on the Top-down and Bottom-up views
of such a group process (Barsade and Gibson, 1998). Furthermore, we explored whether
or not predicting cohesion and emotion in a multi-task setting could improve fItG’s per-
formances. Only the Bottom-up approach (from the individuals to the group) significantly
improves them, for the Task dimension. We also designed two families of approaches to
integrate the link between cohesion and emergent leadership. One directly impacted the
features of the model (e.g., by weighting the ones of the emergent leader) and the other
one focused on integrating emergent leadership representation into the model (e.g., from
the labels of emergent leader). Approaches from both families improve the fItG perfor-
mances.

With this collection of computational models of cohesion, we addressed each research
axis, hence, answering both RQ1 and RQ2.

7.2 Limitations

The contributions presented in this Thesis are not exempted from limitations. In the fol-
lowing, we discuss such limitations from the input of the computational models (i.e., data
and features), the model (i.e., according to each research axis), and the output (i.e., label-
ing strategy) perspectives.

7.2.1 Input

One of the main limitations of our work is the fact that we only used the GAME-ON
dataset to evaluate our models. We, however, made this choice as it is, to the best of our
knowledge, the only dataset that is specifically designed for cohesion and that provides
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self-assessments of such an emergent state. It remains to be explored if similar conclu-
sions apply in different contexts of interaction and types of groups.

GAME-ON also has some limitations. While it provides more than 11h of multimodal
data from 17 groups composed of three persons (i.e., 51 individuals in total), it remains
a relatively small amount of data, preventing us from developing deeper neural networks
and limiting the generalization of the results. Furthermore, it was designed to explore
only two dimensions of cohesion (i.e., Social and Task) over the four presented in (Severt
and Estrada, 2015)’s framework. In addition, the relatively short duration of each data
collection session (i.e., around 1 hour) is likely to have constrained the range of variations
of cohesion we could observe.

As for the features, we focused on extracting them from the audio and motion capture
data. Features computed from further signals (e.g., EEG) and modalities (e.g., face) could
be used to enrich the features set. Also, we used a similar window size for both audio-
and motion capture-based features. Thus, further analysis would help identify the optimal
window sizes according to the signal and/or the modality.

7.2.2 Model
There are several limitations at the Model level that we categorized according to the four
research axes.

Firstly, to investigate RA1, all of the models are predicting the dynamics of cohesion
for the whole interaction, once all the thin slices used for each task (i.e., the last 2mn)
are processed. Leaning toward the development of “real-time” applications, models rely-
ing solely on the thin slices of the previous and/or current task(s), instead of the whole
interaction, should be investigated.

Secondly, to address RA2, all the DNNs were designed to integrate a pre-fixed number
of person. Here, we tested the architectures on groups of three persons. Adding a new
person to a group would imply retraining the models. Thus, designing architectures able
to dynamically self-adapt to various sizes of groups would provide more flexibility to
analyze more diverse groups.

While we identified multiple ways to explore RA3, the computational models focused
on predicting the Social and Task dimensions of cohesion only. A new and open challenge
would be to build computational models that can also take into account other dimensions
(e.g., group pride) and their interplay.

Finally, with respect to RA4, we separately investigated the links between cohesion
and group emotion and cohesion and emergent leadership on the fItG. Thus, approaches
to integrate multiple group processes within the same computational model should be
designed to fully integrate external influences.

7.2.3 Output
The labeling strategy we employed across all of our computational models of cohesion
was designed to consider the dynamics of the Social and Task dimensions of cohesion
as a binary problem (i.e., decrease vs no-decrease). More complex strategies could be
conceived, for example, to integrate more granularities in the categorization of the cohe-
sion’s dynamics (e.g., decrease vs static vs increase). Another improvement would be to
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account for the potential disagreements within the group (e.g., two “increase” vs one “de-
crease” in cohesion). Moreover, labels could also result from the combination of self- and
external assessments of cohesion to minimize the cons introduced by both ratings (Vincia-
relli and Mohammadi, 2014). Finally, the same limitations apply to the labeling strategy
employed to characterize group emotion based on its valence. In fact, arousal could be
used to complement valence, hence, providing more fine-grained information for moving
from a binary to a multiclass approach.

7.3 Future Work

7.3.1 External Assessments of Cohesion

As previously mentioned in Section 7.2.3, more complex labeling strategies could be in-
vestigated. We are currently working on designing a true label of cohesion that mixes
both self- and external assessments. This would be a first step towards the develop-
ment of more robust computational models. Thus, we consider two approaches. The
first one is straightforward and consists of mixing both types of assessments and applying
the same labeling strategy described in Chapter 5. With this approach, each assessment
(from a group member or an external annotator) is equally considered. The second strat-
egy requires computing labels from both self- and external assessments, independently.
Then, we select the most reliable label according to the Social Sciences literature. In
fact, in a binary classification setting, three cases are possible: (1) both labels are similar
(i.e., decrease/decrease or not-decrease/not-decrease), (2) the label extracted from self-
assessments shows not-decrease and the label from external assessments is decrease, and
(3) the label extracted from self-assessments indicates a decrease while the label form
external assessments results in not-decrease. In case (1), both types of assessments lead
to the same label, hence, we retain it. In case (2), we retain the label produced by ex-
ternal assessment. We ground this choice based on Vinciarelli and Mohammadi (2014)’s
study stating that, when persons assess themselves, they tend to provide ratings towards
socially desirable characteristics (here the presence of cohesion). Thus, in this particular
case, we select the “decrease” label from external assessments. In case (3), we retain
the label produced by self-assessments as external raters did not have the full context and
outcomes of the interaction. In fact, they did not have information about the success or
failure of the task. They only had a brief description of the task and did not know if the
group succeeded, hence, potentially biasing external ratings. According to Mullen and
Copper (1994), performance, indeed, has a stronger effect on cohesion than cohesion on
performance. Furthermore, Boone et al. (1997) showed that failure affects cohesion more
than success, especially for the Social and Task dimensions. Successes only maintain the
initial level of cohesion. Thus, because of the negative impact of performance on co-
hesion, we select the label decrease from self-assessments, relying on group members’
feelings and knowledge about the task’s success.
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7.3.2 Cohesion in a Virtual Environment
As briefly introduced in the structured survey (see Chapter 2), with the advent of new
technologies and the actual world context (e.g., health crisis, climate change), more and
more tools are developed to encourage people to meet and gather virtually (e.g., virtual
and hybrid conferences). Among these new technologies, virtual reality (VR) applica-
tions are a promising medium for supporting distributed groups through a broad range of
activities such as gaming (e.g., Star Trek: Bridge Crew1), building and socializing in vir-
tual social communities (e.g., VRChat2), for educational purposes (e.g., Dunleavy et al.,
2009) and many more. Thus, in a long-term perspective, understanding how cohesion
manifests in a virtual environment would provide another angle of research and enrich
our comprehension of cohesion, leading to the development of more robust multimodal,
and potentially hybrid, systems, able to adapt to teams of humans and, eventually, mixed
team of humans and robots or virtual agents.

Inspired by the GAME-ON scenario, we designed a VR application to study groups
with members connected remotely in a virtual environment. As of today, we tested the
application and ran a pilot study. Such a kind of application will enable the collection
of data to study the interaction of diverse groups (e.g., various sizes, cultural differences,
relationships among group members).

1https://www.ubisoft.com/fr-fr/game/star-trek/bridge-crew
2https://hello.vrchat.com/
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Appendix A
Questionnaires

A.1 Adapted GEQ

We adapted the GEQ with the following items on a 9-point Likert scale answering format
(from 1: “Strongly disagree” to 9: “Strongly agree”). Six items are related to the Social
dimension of cohesion while eight items are related to the Task dimension of cohesion.

A.1.1 Items Related to the Social Dimension of Cohesion
1. I did not enjoy socially interacting with the team.

2. I do not want to continue playing with this team.

3. I would rather solve the enigmas on my own than together.

4. We did not have fun during the task.

5. I would like to spend more moments like the previous one with this team.

6. I wish I was on a different team.

A.1.2 Items Related to the Task Dimension of Cohesion
7. I was unhappy with my team’s level of desire to win.

8. This team did not give me enough opportunities to use my abilities when we shared
the enigmas.

9. Our team was united in trying to solve as many enigmas as possible.

10. We all took responsibility for any loss or poor performance.

11. Our team members had conflicting aspirations for solving the enigmas.

12. If members of our group had problems while trying to resolve a problem, everyone
wanted to help them.
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13. Our team members did not communicate freely about each member’s responsibili-
ties during our task.

14. Our team did not work well together.

A.2 Leadership

We assessed leadership with the following six items on a 6-point Likert ranging from 1
(“Completely disagree”) to 6 (“Completely agree”). We used a round-robin rating, hence,
each participant answered each item three times (i.e., the number of group members,
including herself).

The following items were retained, with GM a specific group member:

1. GM decided what shall be done and how it will be done.

2. GM assigned group members to particular tasks.

3. GM tried out his ideas in the group.

4. GM took a leadership role in our team.

5. GM provided direction for the team.

6. GM set goals for the team.

A.3 Emotion

Participants answered the following question: “How do you feel?”. They could pick one
label of emotion among the three positive and three negative labels below as well as
provide their own label:

• Admiring

• Angry

• Proud

• Ashamed

• Happy

• Frustrated

The labels were chosen according to Roseman (2001)’s Emotion Theory. Among
these items, two of them result from an “other-caused” causal attribution (admiration and
anger), two from a self-caused causal attribution (pride and shame), and the other two
from a circumstances-caused causal attribution (happiness and frustration). We selected
these specific labels as they were the most relevant given the context of the game.
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Appendix B
Computational Details of Emergent
Leaders’ Features

Below are the computational details of the emergent leaders’ features described in Chap-
ter 6 (see Table 6.3). Every feature is computed from individuals. Thus, we explain the
procedure to extract each feature for a person i (i.e., pi).

B.1 Features Related to Speaking Activity

All of these “Speaking Activity” (SA) features are extracted using the same speech matrix
computed in Chapter 4. Thus, we know who is speaking at each point in time.
The following SA features were extracted:

• Total speaking time when at least one other group member is speaking: it consists
of summing all the frames in which pi is speaking while pj or pk is speaking (i.e.,
for a time t, pi,t = 1 and pj,t = 1 or pk,t = 1).

• Total speaking time when no one is speaking: it is computed as in the previous
feature, with the condition that for a time t, pi,t = 1 and pj,t = pk,t = 0.

• Ratio between the total speaking time when at least one other group member is
speaking and the total speaking time when no one is speaking.

• Total number of times a person speaks first right after another one: every time the
turn of another member is about to finish (i.e., 10 frames before the end of the turn),
we check if pi is the first one to speak for at least 1s. If that is the case, the counter
is increased by 1.

• Total time of silence: it is computed by summing all the frames where pi = pj =
pk = 0.

• Ratio between the total time of speaking for pi and the total time of silence.

• Total number of speaking turns: we only account for the turns that last at least 2s
(i.e., the number of times pi speaks for at least 2s in the time window).
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• Average of speaking turns duration: it is computed by summing the duration of all
the pi’s turns and dividing it by the total number of speaking turns of pi.

• Total number of times being un/successfully interrupted: it is computed every time
pi is speaking. If another group member starts speaking during pi’s turn, for at least
1s, making pi’s stop, then we increment the number of successful interruptions.
Otherwise, it is considered as an unsuccessful interruption.

• Total number of times un/successfully interrupting other turns: as for the previous
feature, we also quantify the number of times pi interrupted (successfully or not)
the other members.

• Ratio between the total number of time successfully interrupting other turns and the
total number of times being successfully interrupted

• Ratio between the total number of time successfully interrupting other turns and the
total number of speaking turns

• Ratio between the total number of time unsuccessfully interrupting other turns and
the total number of speaking turns

B.2 Features Related to Visual Focus of Attention

All the “Visual Focus of Attention” (VFOA) features are computed from each group mem-
ber (pi). These rely on the concept of Mutual Engagement (ME) which is approximated
as two people looking at each other. Thus, as for the F-formation feature (see Chapter 4),
we also computed, for each person, a cone of attention starting from their head. Based on
these cones, we extracted a “facing” matrix that indicates who looks who, at each point in
time. A visual focus occurs when pi is looking towards another person for at least 0.25s.
A ME occurs when the cones of attention of two persons intersect during a visual focus
(i.e., for at least 0.25s). Below are the VFOA features we extracted:

• Looking someone with no ME (LnoME): it is the total time at which pi is looking
at another member (for a minimum of 0.25s), without being looked at.

• Being looked at with no ME (BLnoME): it is the total time at which pi is being
looked by at least another member, for at least 0.25s), without looking at any of
them.

• ME with any member (ME): it is the total time at which a ME occurs between pi
and any other member.

• Total time being looked at: it is computed by summing all the frames in which pi is
looked at for at least 0.25s. Thus, it results in the sum of BLnoME and ME.

• Number of times one initiates a ME: it is computed by looking at the ME that occur
between pi and another member. Based on the facing matrix, we know who started
looking at the other one. If pi initiated the ME, the counter is increased by 1.

• Ratio between BLnoME and LnoME.
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Curşeu, P. L. (2006). Emergent states in virtual teams: a complex adaptive systems per-
spective. Journal of Information Technology 21, 249–261

Darioly, A. and Mast, M. S. (2014). The role of nonverbal behavior in leadership: An
integrative review. R. E. Riggio & S. J. Tan (Eds.) Leader interpersonal and influence
skills: The soft skills of leadership, 73–100

De Souza, G. and Klein, H. J. (1995). Emergent leadership in the group goal-setting
process. Small group research 26, 475–496

DeChurch, L. A. and Mesmer-Magnus, J. R. (2010). The cognitive underpinnings of
effective teamwork: a meta-analysis. Journal of applied psychology 95, 32–53

Delaherche, E., Chetouani, M., Mahdhaoui, A., Saint-Georges, C., Viaux, S., and Cohen,
D. (2012). Interpersonal synchrony: A survey of evaluation methods across disciplines.
IEEE Transactions on Affective Computing 3, 349–365

Dhall, A. (2019). Emotiw 2019: Automatic emotion, engagement and cohesion prediction
tasks. In 2019 International Conference on Multimodal Interaction. 546–550

Dhall, A., Goecke, R., Ghosh, S., Joshi, J., Hoey, J., and Gedeon, T. (2017). From
individual to group-level emotion recognition: Emotiw 5.0. In Proceedings of the 19th
ACM international conference on multimodal interaction. 524–528

Dion, K. L. (2000). Group cohesion: From field of forces to multidimensional construct.
Group Dynamics: Theory, Research, and Practice 4, 7–26

Dionne, S. D., Yammarino, F. J., Atwater, L. E., and Spangler, W. D. (2004). Transforma-
tional leadership and team performance. Journal of organizational change management
17, 177–193

132



BIBLIOGRAPHY

Doyran, M., Schimmel, A., Baki, P., Ergin, K., Türkmen, B., Salah, A. A., Bakkes, S. C.,
Kaya, H., Poppe, R., and Salah, A. A. (2021). Mumbai: multi-person, multimodal
board game affect and interaction analysis dataset. Journal on Multimodal User Inter-
faces 15, 373–391

Dulebohn, J. H. and Hoch, J. E. (2017). Virtual teams in organizations. Human Resource
Management Review 27, 569–574

Dunleavy, M., Dede, C., and Mitchell, R. (2009). Affordances and limitations of immer-
sive participatory augmented reality simulations for teaching and learning. Journal of
science Education and Technology 18, 7–22

Edmondson, A. C. and Lei, Z. (2014). Psychological safety: The history, renaissance,
and future of an interpersonal construct. Annual review of organizational psychology
and organizational behavior 1, 23–43

Ekman, P., Davidson, R. J., and Friesen, W. V. (1990). The duchenne smile: Emotional
expression and brain physiology: Ii. Journal of personality and social psychology 58,
342–353

Ens, B., Lanir, J., Tang, A., Bateman, S., Lee, G., Piumsomboon, T., and Billinghurst, M.
(2019). Revisiting collaboration through mixed reality: The evolution of groupware.
International Journal of Human-Computer Studies 131, 81–98

Estabrooks, P. A. and Carron, A. V. (2000a). The physical activity group environment
questionnaire: An instrument for the assessment of cohesion in exercise classes. Group
Dynamics 4, 230–243

Estabrooks, P. A. and Carron, A. V. (2000b). Predicting scheduling self-efficacy in older
adult exercisers: The role of task cohesion. Journal of Aging and Physical Activity 8,
41–50

Evans, C. R. and Dion, K. L. (2012). Group cohesion and performance: A meta-analysis.
Small Group Research 43, 690–701

Eyben, F., Scherer, K. R., Schuller, B. W., Sundberg, J., André, E., Busso, C., Devillers,
L. Y., Epps, J., Laukka, P., Narayanan, S. S., and Truong, K. P. (2015). The geneva min-
imalistic acoustic parameter set (gemaps) for voice research and affective computing.
IEEE transactions on affective computing 7, 190–202

Eyben, F., Weninger, F., Gross, F., and Schuller, B. (2013). Recent developments in
opensmile, the munich open-source multimedia feature extractor. In Proceedings of
the 21st ACM international conference on Multimedia. 835–838

Eyben, F., Wöllmer, M., and Schuller, B. (2010). Opensmile: the munich versatile and
fast open-source audio feature extractor. In Proceedings of the 18th ACM international
conference on Multimedia. 1459–1462

133



BIBLIOGRAPHY

Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., and Strahan, E. J. (1999). Evaluating
the use of exploratory factor analysis in psychological research. Psychological methods
4, 272–299

Fang, S. and Achard, C. (2018). Estimation of Cohesion with Feature Categorization on
Small Scale Groups. In Proceedings of WACAI (Ile de Porquerolles, France)

Fay, M. P. and Shaw, P. A. (2010). Exact and asymptotic weighted logrank tests for
interval censored data: The interval R package. Journal of Statistical Software 36,
1–34

Feese, S., Arnrich, B., Tröster, G., Meyer, B., and Jonas, K. (2012). Quantifying behav-
ioral mimicry by automatic detection of nonverbal cues from body motion. In Proceed-
ings of International Conference on Privacy, Security, Risk and Trust and International
Conference on Social Computing. 520–525

Festinger, L., Schachter, S., and Back, K. (1950). Social pressures in informal groups
(Harper)

Fisher, R. A. (1992). Statistical methods for research workers. In Breakthroughs in
statistics (Springer). 66–70

Fiske, S., Cuddy, A., and Glick, P. (2007). Universal dimensions of social cognition:
Warmth and competence. Trends in cognitive sciences 11, 77–83

Forsyth, D. (2012). Group Dynamics (Wadsworth Publishing), 6 edn.

Fox, L. D., Rejeski, W. J., and Gauvin, L. (2000). Effects of leadership style and group
dynamics on enjoyment of physical activity. American Journal of Health Promotion
14, 277–283

Freedman, G. and Flanagan, M. (2017). From dictators to avatars: Furthering social
and personality psychology through game methods. Social and personality psychology
compass 11, e12368

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of computer and system sciences 55,
119–139

Friedrich, T. L., Vessey, W. B., Schuelke, M. J., Ruark, G. A., and Mumford, M. D.
(2009). A framework for understanding collective leadership: The selective utilization
of leader and team expertise within networks. The Leadership Quarterly 20, 933–958

García-Calvo, T., Leo, F. M., Gonzalez-Ponce, I., Sánchez-Miguel, P. A., Mouratidis,
A., and Ntoumanis, N. (2014). Perceived coach-created and peer-created motivational
climates and their associations with team cohesion and athlete satisfaction: Evidence
from a longitudinal study. Journal of sports sciences 32, 1738–1750

Gatica-Perez, D., McCowan, I., Zhang, D., and Bengio, S. (2005). Detecting group
interest-level in meetings. In Proceedings of International Conference on Acoustics,
Speech, and Signal Processing (ICASSP). vol. 1, 489–492

134



BIBLIOGRAPHY

Gavrikov, I. and Savchenko, A. V. (2020). Efficient group-based cohesion prediction in
images using facial descriptors. In Proceedings of the 9th International Conference on
Analysis of Images, Social Networks and Texts (Springer), 140–148

George, D. and Mallery, P. (2016). SPSS for Windows Step by Step: A Simple Guide and
Reference. 11.0 update , 2003 (Boston: Allyn & Bacon)

Gerpott, F. H., Lehmann-Willenbrock, N., Silvis, J. D., and Van Vugt, M. (2018). In
the eye of the beholder? an eye-tracking experiment on emergent leadership in team
interactions. The Leadership Quarterly 29, 523–532

Gerpott, F. H., Lehmann-Willenbrock, N., Voelpel, S. C., and Van Vugt, M. (2019). It’s
not just what is said, but when it’s said: A temporal account of verbal behaviors and
emergent leadership in self-managed teams. Academy of Management Journal 62, 717–
738

Ghosh, S., Dhall, A., Sebe, N., and Gedeon, T. (2022). Automatic prediction of group
cohesiveness in images. IEEE Transactions on Affective Computing 13, 1677–1690

Gibson, D. E. (1997). The struggle for reason: The sociology of emotions in organiza-
tions. Social perspectives on emotion 4, 211–256

Gilbert, N. (2004). Agent-based social simulation: dealing with complexity. The Complex
Systems Network of Excellence 9, 1–14

[Python package] Gillies, S. et al. (2007). Shapely: manipulation and analysis of geomet-
ric objects

Glenn, P. (2003). Laughter in interaction, vol. 18 (Cambridge University Press)

Goldin-Meadow, S. and Alibali, M. W. (2013). Gesture’s role in speaking, learning, and
creating language. Annual review of psychology 64, 257–283

Goleman, D. (2006). Social intelligence (Hutchinson)

Gonzales, A. L., Hancock, J. T., and Pennebaker, J. W. (2010). Language style matching
as a predictor of social dynamics in small groups. Communication Research 37, 3–19

Gordon, I., Gilboa, A., Cohen, S., Milstein, N., Haimovich, N., Pinhasi, S., and Sieg-
man, S. (2020). Physiological and behavioral synchrony predict group cohesion and
performance. Scientific Reports 10, 1–12

Goudbeek, M. and Scherer, K. (2010). Beyond arousal: Valence and potency/control cues
in the vocal expression of emotion. The Journal of the Acoustical Society of America
128, 1322–1336

Goutte, C. and Gaussier, E. (2005). A probabilistic interpretation of precision, recall
and f-score, with implication for evaluation. In European conference on information
retrieval (Springer), 345–359

135



BIBLIOGRAPHY

Griffith, J. (1988). Measurement of group cohesion in u.s. army units. Basic and Applied
Social Psychology 9, 149–171

Grossman, R., Friedman, S. B., and Kalra, S. (2017). Teamwork processes and emergent
states. The Wiley Blackwell handbook of the psychology of team working and collabo-
rative processes 42, 243–269

Grossman, R., Rosch, Z., Mazer, D., and Salas, E. (2015). What matters for team cohesion
measurement? A Synthesis. Research on Managing Groups and Teams 17, 147–180

Gully, S. M., Devine, D. J., and Whitney, D. J. (2012). A meta-analysis of cohesion
and performance: Effects of level of analysis and task interdependence. Small Group
Research 43, 702–725

Gunes, H. and Hung, H. (2015). Emotional and social signals: A neglected frontier in
multimedia computing? IEEE MultiMedia 22, 76–85

Guo, D., Wang, K., Yang, J., Zhang, K., Peng, X., and Qiao, Y. (2019). Exploring regular-
izations with face, body and image cues for group cohesion prediction. In Proceedings
of the 21st International Conference on Multimodal Interaction. 557–561

Hackman, J. R. and Morris, C. G. (1975). Group tasks, group interaction process, and
group performance effectiveness: A review and proposed integration. Advances in
experimental social psychology 8, 45–99

Hagstrom, W. O. and Selvin, H. C. (1965). Two dimensions of cohesiveness in small
groups. Sociometry , 30–43

Hair, J., Black, W., Babin, B., Anderson, R., and Tatham, R. (2010). Multivariate data
analysis. 6th (ed.) prentice-hall. Upper Saddle River NJ

Hall, E. T. (1966). The hidden dimension (Garden City, NY: Doubleday)

Hallgren, K. A. (2012). Computing inter-rater reliability for observational data: an
overview and tutorial. Tutorials in quantitative methods for psychology 8, 23–34

Hamari, J., Koivisto, J., and Sarsa, H. (2014). Does gamification work?-a literature review
of empirical studies on gamification. In Proceedings of the 47th Hawaii international
conference on system sciences (IEEE), 3025–3034

Hammerla, N. Y., Halloran, S., and Ploetz, T. (2016). Hdeep, convolutional, and recurrent
models for human activity recognition using wearables. In Proceedings of the 25th
International Joint Conference on Artificial Intelligence. 1533–1540

Hanna, A. A., Smith, T. A., Kirkman, B. L., and Griffin, R. W. (2021). The emergence
of emergent leadership: a comprehensive framework and directions for future research.
Journal of Management 47, 76–104

Hans, A. and Hans, E. (2015). Kinesics, haptics and proxemics: Aspects of non-verbal
communication. IOSR Journal of Humanities and Social Science 20, 47–52

136



BIBLIOGRAPHY

Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J. H. (2009). The elements of
statistical learning: data mining, inference, and prediction (Springer)

Hermes, D. J. (1988). Measurement of pitch by subharmonic summation. The journal of
the acoustical society of America 83, 257–264

Hersey, P. and Blanchard, K. H. (1969). Management of organizational behavior: Utiliz-
ing human resources (Academy of Management Briarcliff Manor, NY 10510)

Heuzé, J.-P. and Fontayne, P. (2002). Questionnaire sur l’ambiance du groupe: A french-
language instrument for measuring group cohesion. Journal of Sport and Exercise
Psychology 24, 42–67

Hilton, K. (2016). The perception of overlapping speech: Effects of speaker prosody and
listener attitudes. In Proceedings of the Interspeech 2016. 1260–1264

Hoch, J. E. and Kozlowski, S. W. (2014). Leading virtual teams: Hierarchical leadership,
structural supports, and shared team leadership. Journal of applied psychology 99,
390–403

Hogg, M. A. and Hardie, E. A. (1991). Social attraction, personal attraction, and self-
categorization-, a field study. Personality and Social Psychology Bulletin 17, 175–180

Hughes, J. F., Van Dam, A., McGuire, M., Foley, J. D., Sklar, D., Feiner, S. K., and
Akeley, K. (2014). Computer graphics: principles and practice (Pearson Education)

Hung, H. and Chittaranjan, G. (2010). The idiap wolf corpus: exploring group behaviour
in a competitive role-playing game. In Proceedings of the 18th ACM international
conference on Multimedia. 879–882

Hung, H. and Gatica-Perez, D. (2010). Estimating cohesion in small groups using audio-
visual nonverbal behavior. IEEE Transactions on Multimedia 12, 563–575

Ilgen, D. R., Hollenbeck, J. R., Johnson, M., and Jundt, D. (2005). Teams in organiza-
tions: From input-process-output models to imoi models. Annual Revision Psychologist
56, 517–543

Jackson, P. H. and Agunwamba, C. C. (1977). Lower bounds for the reliability of the
total score on a test composed of non-homogeneous items: I: Algebraic lower bounds.
Psychometrika 42, 567–578

Jayagopi, D. B., Hung, H., Yeo, C., and Gatica-Perez, D. (2009). Modeling dominance
in group conversations using nonverbal activity cues. IEEE Transactions on Audio,
Speech, and Language Processing 17, 501–513

John, O. P. (1990). The "big five" factor taxonomy: Dimensions of personality in the
natural language and in questionnaires. Handbook of personality: Theory and research
, 66–100

137



BIBLIOGRAPHY

Jokinen, K., Furukawa, H., Nishida, M., and Yamamoto, S. (2013). Gaze and turn-taking
behavior in casual conversational interactions. ACM Transactions on Interactive Intel-
ligent Systems (TiiS) 3, 1–30

Jones, S. E. and LeBaron, C. D. (2002). Research on the relationship between verbal
and nonverbal communication: Emerging integrations. Journal of communication 52,
499–521

Joo, H., Simon, T., Li, X., Liu, H., Tan, L., Gui, L., Banerjee, S., Godisart, T., Nabbe,
B., Matthews, I., Kanade, T., Nobuhara, S., and Sheikh, Y. (2019). Panoptic studio:
A massively multiview system for social interaction capture. IEEE Transactions on
Pattern Analysis and Machine Intelligence 41, 190–204

Kalma, A. P., Visser, L., and Peeters, A. (1993). Sociable and aggressive dominance:
Personality differences in leadership style? The Leadership Quarterly 4, 45–64

Kamper, S. J., Ostelo, R. W., Knol, D. L., Maher, C. G., de Vet, H. C., and Hancock,
M. J. (2010). Global perceived effect scales provided reliable assessments of health
transition in people with musculoskeletal disorders, but ratings are strongly influenced
by current status. Journal of clinical epidemiology 63, 760–766

Kantharaju, R. B., Langlet, C., Barange, M., Clavel, C., and Pelachaud, C. (2020). Mul-
timodal analysis of cohesion in multi-party interactions. In Proceedings of The 12th
Language Resources and Evaluation Conference (European Language Resources As-
sociation), 498–507

Kantharaju, R. B. and Pelachaud, C. (2020). Analysis of Laughter in Cohesive Groups. In
Proceedings of the Laughter and Other Non-Verbal Vocalisations Workshop (Bielefeld,
Germany), 74–76

Kantharaju, R. B. and Pelachaud, C. (2021). Social signals of cohesion in multi-party
interactions. In Proceedings of the 21st ACM International Conference on Intelligent
Virtual Agents. 9–16

Kapur, A., Kapur, A., Virji-Babul, N., Tzanetakis, G., and Driessen, P. F. (2005). Gesture-
based affective computing on motion capture data. In International conference on
affective computing and intelligent interaction (Springer), 1–7

Kasparova, A., Celiktutan, O., and Cukurova, M. (2020). Inferring student engagement
in collaborative problem solving from visual cues. In Companion Publication of the of
the 22nd International Conference on Multimodal Interaction. 177–181

Katz, D. (1960). The functional approach to the study of attitudes. Public Opinion Quar-
terly 24, 163–204

Kauffeld, S., Lehmann-Willenbrock, N., and Meinecke, A. L. (2018). The Advanced
Interaction Analysis for Teams (act4teams) Coding Scheme (Cambridge University
Press), chap. 21. Cambridge Handbooks in Psychology. 422–431

138



BIBLIOGRAPHY

Keller, R. T. (1986). Predictors of the performance of project groups in R&D organiza-
tions. Academy of Management Journal 29, 715–726

Kendon, A. (1990). Spatial organization in social encounters: The f-formation system.
Conducting interaction: Patterns of behavior in focused encounters

Kendon, A. (2010). Spacing and orientation in co-present interaction. In Development of
multimodal interfaces: Active listening and synchrony (Springer). 1–15

King, G. and Zeng, L. (2001). Logistic regression in rare events data. Political analysis
9, 137–163

Klein, K. J. and Kozlowski, S. W. (2000). Multilevel theory, research, and methods in
organizations: Foundations, extensions, and new directions. (Jossey-Bass)

Knapp, M. L., Hall, J. A., and Horgan, T. G. (2013). Nonverbal communication in human
interaction (Cengage Learning)

Kolmogorov, A. (1933). Sulla determinazione empirica di una lgge di distribuzione. Inst.
Ital. Attuari, Giorn. 4, 83–91

Koopmans, L., Bernaards, C., Hildebrandt, V., van Buuren, S., Van der Beek, A. J., and
de Vet, H. C. (2013). Development of an individual work performance questionnaire.
International journal of productivity and performance management 62, 6–28

Koutsombogera, M. and Vogel, C. (2018). Modeling collaborative multimodal behavior in
group dialogues: The multisimo corpus. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation (LREC 2018). 2945–2951

Kozlowski, S. W. (2015). Advancing research on team process dynamics: Theoretical,
methodological, and measurement considerations. Organizational Psychology Review
5, 270–299

Kozlowski, S. W. and Chao, G. T. (2018). Unpacking team process dynamics and emer-
gent phenomena: Challenges, conceptual advances, and innovative methods. American
Psychologist 73, 576–592

Kozlowski, S. W., Gully, S. M., Nason, E. R., and Smith, E. M. (1999). Developing
adaptive teams: A theory of compilation and performance across levels and time. The
changing nature of work performance: Implications for staffing, personnel actions, and
development , 240–292

Kozlowski, S. W. J. and Chao, G. T. (2012). The dynamics of emergence: Cognition and
cohesion in work teams. Managerial and Decision Economics 33, 335–354

Kozlowski, S. W. J. and Ilgen, D. R. (2006). Enhancing the effectiveness of work groups
and teams. Psychological Science in the Public Interest 7, 77–124

Kozub, S. A. and McDonnell, J. F. (2000). Exploring the relationship between cohesion
and collective efficacy in rugby teams. Journal of sport behavior 23, 120–129

139



BIBLIOGRAPHY

Kubasova, U., Murray, G., and Braley, M. (2019). Analyzing verbal and nonverbal fea-
tures for predicting group performance. In Proceedings of the 46th Interspeech (ISCA),
1896–1900

Lai, C. and Murray, G. (2018). Predicting group satisfaction in meeting discussions. In
Proceedings of the Workshop on Modeling Cognitive Processes from Multimodal Data.
1–8

Lakhmani, S. G., Neubauer, C., Krausman, A., Fitzhugh, S. M., Berg, S. K., Wright, J. L.,
Rovira, E., Blackman, J. J., and Schaefer, K. E. (2022). Cohesion in human-autonomy
teams: an approach for future research. Theoretical Issues in Ergonomics Science ,
1–38

Lakin, J. L. and Chartrand, T. L. (2003). Using nonconscious behavioral mimicry to
create affiliation and rapport. Psychological science 14, 334–339

Lanaj, K. and Hollenbeck, J. R. (2015). Leadership over-emergence in self-managing
teams: The role of gender and countervailing biases. Academy of Management Journal
58, 1476–1494

Lawler, E. J., Thye, S. R., and Yoon, J. (2000). Emotion and group cohesion in productive
exchange. American Journal of Sociology 106, 616–657

Lawler, E. J. and Yoon, J. (1996). Commitment in exchange relations: Test of a theory of
relational cohesion. American sociological review , 89–108

Le Bon, G. (1897). The crowd: A study of the popular mind (TF Unwin)

Lehmann-Willenbrock, N. and Allen, J. A. (2018). Modeling temporal interaction dy-
namics in organizational settings. Journal of business and psychology 33, 325–344

LePine, J. A., Piccolo, R. F., Jackson, C. L., Mathieu, J. E., and Saul, J. R. (2008). A meta-
analysis of teamwork processes: tests of a multidimensional model and relationships
with team effectiveness criteria. Personnel psychology 61, 273–307

Levi, D. (2001). Group dynamics for teams (Thousand Oaks, CA: Sage)

Levinson, S. C. and Torreira, F. (2015). Timing in turn-taking and its implications for
processing models of language. Frontiers in Psychology 6, 731

Lewin, K. (1939). Field theory and experiment in social psychology: Concepts and meth-
ods. American Journal of Sociology 44, 868–896

Lewin, K. (1951). Field theory in social science: selected theoretical papers (Harpers)

Light Shields, D. L., Gardner, D. E., Light Bredemeier, B. J., and Bostro, A. (1997).
The relationship between leadership behaviors and group cohesion in team sports. The
Journal of Psychology 131, 196–210

140



BIBLIOGRAPHY

Liu, B., Yu, X., Zhang, P., Yu, A., Fu, Q., and Wei, X. (2017). Supervised deep feature
extraction for hyperspectral image classification. IEEE Transactions on Geoscience
and Remote Sensing 56, 1909–1921

López-Zafra, E., Garcia-Retamero, R., and Landa, J. M. A. (2008). The role of trans-
formational leadership, emotional intelligence, and group cohesiveness on leadership
emergence. Journal of Leadership Studies 2, 37–49

Lord, R. G., Binning, J. F., Rush, M. C., and Thomas, J. C. (1978). The effect of per-
formance cues and leader behavior on questionnaire ratings of leadership behavior.
Organizational Behavior and Human Performance 21, 27–39

Lott, A. J. and Lott, B. E. (1965). Group cohesiveness as interpersonal attraction: A re-
view of relationships with antecedent and consequent variables. Psychological Bulletin
64, 259–309

Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model pre-
dictions. In Proceedings of the Advances in neural information processing systems.
4765–4774

Magee, J. C. and Tiedens, L. Z. (2006). Emotional ties that bind: The roles of valence
and consistency of group emotion in inferences of cohesiveness and common fate. Per-
sonality and Social Psychology Bulletin 32, 1703–1715

Makhoul, J. (1975). Linear prediction: A tutorial review. Proceedings of the IEEE 63,
561–580

Maman, L. (2020). Multimodal groups’ analysis for automated cohesion estimation. In
Proceedings of the 22nd International Conference on Multimodal Interaction. 713–717

Maman, L., Ceccaldi, E., Lehmann-Willenbrock, N., Likforman-Sulem, L., Chetouani,
M., Volpe, G., and Varni, G. (2020). Game-on: A multimodal dataset for cohesion and
group analysis. IEEE Access 8, 124185–124203

Maman, L., Chetouani, M., Likforman-Sulem, L., and Varni, G. (2021a). Using valence
emotion to predict group cohesion’s dynamics: Top-down and bottom-up approaches.
In Proceedings of the 9th International Conference on Affective Computing and Intel-
ligent Interaction (ACII). 1–8

Maman, L., Likforman-Sulem, L., Chetouani, M., and Varni, G. (2021b). Exploiting
the interplay between social and task dimensions of cohesion to predict its dynamics
leveraging social sciences. In Proceedings of the 23rd International Conference on
Multimodal Interaction. 16–24

Maman, L. and Varni, G. (2020). GRACE : Un projet portant sur l’étude automatique de
la cohésion dans les petits groupes d’humains. In Proceedings of WACAI (Ile d’Oléron,
France)

Marks, M. A., Mathieu, J. E., and Zaccaro, S. J. (2001). A temporally based framework
and taxonomy of team processes. The Academy of Management Review 26, 356–376

141



BIBLIOGRAPHY

Maslow, A. H. (1943). A theory of human motivation. Psychological review 50, 370–396

Mast, M. S. (2002). Dominance as expressed and inferred through speaking time: A
meta-analysis. Human Communication Research 28, 420–450

Maynard, M. T., Kennedy, D. M., Sommer, S. A., and Passos, A. M. (2015). Team
cohesion: A theoretical consideration of its reciprocal relationships within the team
adaptation nomological network. In Team cohesion: Advances in psychological theory,
methods and practice (Emerald Group Publishing Limited), vol. 17. 83–111

McAuley, E., Duncan, T., and Tammen, V. V. (1989). Psychometric properties of the
intrinsic motivation inventory in a competitive sport setting: A confirmatory factor
analysis. Research Quarterly for Exercise and Sport 60, 48–58

McClean, E. J., Martin, S. R., Emich, K. J., and Woodruff, C. T. (2018). The social con-
sequences of voice: An examination of voice type and gender on status and subsequent
leader emergence. Academy of Management Journal 61, 1869–1891

McCowan, L., Gatica-Perez, D., Bengio, S., Lathoud, G., Barnard, M., and Zhang, D.
(2005). Automatic analysis of multimodal group actions in meetings. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 27, 305–317

McNeish, D. (2018). Thanks coefficient alpha, we’ll take it from here. Psychological
Methods 23, 412–433

Menesini, E., Tassi, F., and Nocentini, A. (2018). The competitive attitude scale (CAS):
a multidimensional measure of competitiveness in adolescence. Journal of Psychology
& Clinical Psychiatry 9, 240–244

Michalisin, M. D., Karau, S. J., and Tangpong, C. (2004). Top management team cohesion
and superior industry returns: An empirical study of the resource-based view. Group
& Organization Management 29, 125–140

Miranda Correa, J. A., Abadi, M. K., Sebe, N., and Patras, I. (2018). Amigos: A dataset
for affect, personality and mood research on individuals and groups. IEEE Transactions
on Affective Computing , 479–493

Molnar, C. (2022). Interpretable Machine Learning. 2 edn.
Https://christophm.github.io/interpretable-ml-book

Moreno, J. L. (1934). Who shall survive?: A new approach to the problem of human
interrelations. (Nervous and Mental Disease Publishing Co)

Morgeson, F. P., DeRue, D. S., and Karam, E. P. (2010). Leadership in teams: A functional
approach to understanding leadership structures and processes. Journal of Management
36, 5–39

Moustafa, F. and Steed, A. (2018). A longitudinal study of small group interaction in
social virtual reality. In Proceedings of the 24th ACM Symposium on Virtual Reality
Software and Technology. 1–10

142



BIBLIOGRAPHY

Mullen, B. and Copper, C. (1994). The relation between group cohesiveness and perfor-
mance: An integration. Psychological Bulletin 115, 210–227

Müller, P., Huang, M. X., and Bulling, A. (2018). Detecting low rapport during natural
interactions in small groups from non-verbal behaviour. In 23rd International Confer-
ence on Intelligent User Interfaces. 153–164

Muller, P. M. and Bulling, A. (2019). Emergent leadership detection across datasets. In
Proceedings of the 21st International Conference on Multimodal Interaction. 274–278

Murray, G. and Oertel, C. (2018). Predicting group performance in task-based interaction.
In Proceedings of the 20th ACM International Conference on Multimodal Interaction.
14–20

Nanninga, M. C., Zhang, Y., Lehmann-Willenbrock, N., Szlávik, Z., and Hung, H. (2017).
Estimating verbal expressions of task and social cohesion in meetings by quantifying
paralinguistic mimicry. In Proceedings of the 19th ACM International Conference on
Multimodal Interaction. 206–215

Niewiadomski, R., Mancini, M., Baur, T., Varni, G., Griffin, H., and Aung, M. S. (2013).
Mmli: Multimodal multiperson corpus of laughter in interaction. In Proceedings of the
International Workshop on Human Behavior Understanding (Springer), 184–195

Nilsson, R., Pena, J. M., Björkegren, J., and Tegnér, J. (2007). Consistent feature selection
for pattern recognition in polynomial time. The Journal of Machine Learning Research
8, 589–612

Nov, O. and Arazy, O. (2013). Personality-targeted design: theory, experimental pro-
cedure, and preliminary results. In Proceedings of the 16th conference on Computer
supported cooperative work. 977–984

Okada, S., Aran, O., and Gatica-Perez, D. (2015). Personality trait classification via co-
occurrent multiparty multimodal event discovery. In Proceedings of the 17th ACM on
International Conference on Multimodal Interaction. 15–22

Pantic, M., Cowie, R., D’Errico, F., Heylen, D., Mehu, M., Pelachaud, C., Poggi, I.,
Schroeder, M., and Vinciarelli, A. (2011). Social signal processing: the research
agenda. In Visual analysis of humans (Springer). 511–538

Pantic, M., Nijholt, A., Pentland, A., and Huanag, T. S. (2008). Human-centred intelligent
human? computer interaction (hci2): how far are we from attaining it? International
Journal of Autonomous and Adaptive Communications Systems 1, 168–187

Pantic, M., Pentland, A., Nijholt, A., and Huang, T. S. (2007). Human computing and ma-
chine understanding of human behavior: A survey. In Artifical intelligence for human
computing (Springer). 47–71

Pantic, M. and Vinciarelli, A. (2014). Social signal processing. The Oxford handbook of
affective computing , 84–93

143



BIBLIOGRAPHY

Parthasarathy, S. and Busso, C. (2017). Jointly predicting arousal, valence and dominance
with multi-task learning. In Interspeech. vol. 2017, 1103–1107

Paskevich, D. M., Brawley, L. R., Dorsch, K. D., and Widmeyer, W. N. (1999). Rela-
tionship between collective efficacy and team cohesion: Conceptual and measurement
issues. Group Dynamics: Theory, Research, and Practice 3, 210–222

Pentland, A. (2005). Socially aware, computation and communication. Computer 38,
33–40

Pentland, A. (2007). Social signal processing [exploratory dsp]. IEEE Signal Processing
Magazine 24, 108–111

Peters, G.-J. (2014). The alpha and the omega of scale reliability and validity: why and
how to abandon cronbach’s alpha. European Health Psychologist 16, 56–69

Piana, S., Mancini, M., Camurri, A., Varni, G., and Volpe, G. (2013). Automated analysis
of non-verbal expressive gesture. In Human Aspects in Ambient Intelligence (Springer).
41–54

Picard, R. W. (1999). Affective computing for hci. In HCI (1) (Citeseer), 829–833

Picard, R. W. (2000). Affective computing (MIT press)

Picard, R. W. (2003). Affective computing: challenges. International Journal of Human-
Computer Studies 59, 55–64

Picazo, C., Gamero, N., Zornoza, A., and Peiró, J. M. (2015). Testing relations between
group cohesion and satisfaction in project teams: A cross-level and cross-lagged ap-
proach. European Journal of Work and Organizational Psychology 24, 297–307

Provine, R. R. (1993). Laughter punctuates speech: Linguistic, social and gender contexts
of laughter. Ethology 95, 291–298

Rapp, T., Maynard, T., Domingo, M., and Klock, E. (2021). Team emergent states: What
has emerged in the literature over 20 years. Small Group Research 52, 68–102

Redcay, E. and Schilbach, L. (2019). Using second-person neuroscience to elucidate the
mechanisms of social interaction. Nature Reviews Neuroscience 20, 495–505

Revelle, W. and Zinbarg, R. (2009). Coefficients alpha, beta, omega, and the glb: Com-
ments on sijtsma. Psychometrika 74, 145

Ringeval, F., Marchi, E., Grossard, C., Xavier, J., Chetouani, M., Cohen, D., and Schuller,
B. (2016). Automatic analysis of typical and atypical encoding of spontaneous emo-
tion in the voice of children. In Proceedings of the 17th Annual Conference of the
International Speech Communication Association (ISCA), 1210–1214

Roseman, I. and Smith, C. (2001). Appraisal theory. Appraisal processes in emotion:
Theory, methods, research , 3–19

144



BIBLIOGRAPHY

Roseman, I. J. (2001). A model of appraisal in the emotion system. Appraisal processes
in emotion: Theory, methods, research , 68–91

Roseman, I. J. (2013). Appraisal in the emotion system: Coherence in strategies for
coping. Emotion Review 5, 141–149

Rosh, L., Offermann, L. R., and Van Diest, R. (2012). Too close for comfort? Distin-
guishing between team intimacy and team cohesion. Human Resource Management
Review 22, 116–127

Runkel, P. J., Lawrence, M., Oldfield, S., Rider, M., and Clark, C. (1971). Stages of
group development: An empirical test of tuckman’s hypothesis. The Journal of Applied
Behavioral Science 7, 180–193

Ryokai, K., Durán López, E., Howell, N., Gillick, J., and Bamman, D. (2018). Capturing,
representing, and interacting with laughter. In Proceedings of the CHI Conference on
Human Factors in Computing Systems. 1–12

Saarinen, A., Harjunen, V., Jasinskaja-Lahti, I., Jääskeläinen, I. P., and Ravaja, N. (2021).
Social touch experience in different contexts: A review. Neuroscience & Biobehavioral
Reviews 131, 360–372

Sabry, S., Maman, L., and Varni, G. (2021). An exploratory computational study on the
effect of emergent leadership on social and task cohesion. In Companion Publication
of the 23rd International Conference on Multimodal Interaction. 263–272

Sahi, R. S., Dieffenbach, M. C., Gan, S., Lee, M., Hazlett, L. I., Burns, S. M., Lieberman,
M. D., Shamay-Tsoory, S. G., and Eisenberger, N. I. (2021). The comfort in touch:
Immediate and lasting effects of handholding on emotional pain. PloS one 16, 1–15

Salah, A. A., Pantic, M., and Vinciarelli, A. (2011). Recent developments in social signal
processing. In Proceedings of the IEEE International Conference on Systems, Man,
and Cybernetics (IEEE), 380–385

Salas, E., Grossman, R., Hughes, A. M., and Coultas, C. W. (2015). Measuring team
cohesion: Observations from the science. Human Factors 57, 365–374

Salinäs, E.-L. (2002). Collaboration in multi-modal virtual worlds: Comparing touch,
text, voice and video. In The social life of avatars (Springer). 172–187

Sanchez-Cortes, D., Aran, O., and Gatica-Perez, D. (2011a). An audio visual corpus for
emergent leader analysis. In Proceedings of theWorkshop on multimodal corpora for
machine learning: taking stock and road mapping the future, ICMI-MLMI (Citeseer),
1–4

Sanchez-Cortes, D., Aran, O., Mast, M. S., and Gatica-Perez, D. (2010). Identifying
emergent leadership in small groups using nonverbal communicative cues. In Proceed-
ings of the International conference on multimodal interfaces and the workshop on
machine learning for multimodal interaction. 1–4

145



BIBLIOGRAPHY

Sanchez-Cortes, D., Aran, O., Mast, M. S., and Gatica-Perez, D. (2011b). A nonverbal
behavior approach to identify emergent leaders in small groups. IEEE Transactions on
Multimedia 14, 816–832

Santamaria-Granados, L., Munoz-Organero, M., Ramirez-Gonzalez, G., Abdulhay, E.,
and Arunkumar, N. (2018). Using deep convolutional neural network for emotion de-
tection on a physiological signals dataset (amigos). IEEE Access 7, 57–67

Sarris, A. and Kirby, N. (2005). Antarctica: A study of person-culture fit. Australian
Journal of Psychology 57, 161–169

Savitzky, A. and Golay, M. J. (1964). Smoothing and differentiation of data by simplified
least squares procedures. Analytical chemistry 36, 1627–1639

Schachter, S., Ellertson, N., McBride, D., and Gregory, D. (1951). An experimental study
of cohesiveness and productivity. Human Relations 4, 229–238

Scherer, K. R. (2009). Emotions are emergent processes: they require a dynamic com-
putational architecture. Philosophical Transactions of the Royal Society B: Biological
Sciences 364, 3459–3474

Scherer, S., Weibel, N., Morency, L.-P., and Oviatt, S. (2012). Multimodal prediction
of expertise and leadership in learning groups. In Proceedings of the 1st International
Workshop on Multimodal Learning Analytics. 1–8

Schneider, B. (1990). The climate for service: An application of the climate construct.
Organizational climate and culture 1, 383–412

Schneider, H. W. and Mcdougall, W. (1921). The group mind. Journal of Philosophy 18,
690–697

Schnur, T. T., Costa, A., and Caramazza, A. (2006). Planning at the phonological level
during sentence production. Journal of psycholinguistic research 35, 189–213

Schroeder, R. (2002). Social interaction in virtual environments: Key issues, common
themes, and a framework for research. In The social life of avatars (Springer). 1–18

Schroff, F., Kalenichenko, D., and Philbin, J. (2015). Facenet: A unified embedding for
face recognition and clustering. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 815–823

Schuller, B., Steidl, S., Batliner, A., Vinciarelli, A., Scherer, K., Ringeval, F., Chetouani,
M., Weninger, F., Eyben, F., Marchi, E., Mortillaro, M., Salamin, H., Polychroniou, A.,
Valente, F., and Kim, S. (2013). The interspeech 2013 computational paralinguistics
challenge: Social signals, conflict, emotion, autism. In Proceedings INTERSPEECH
2013, 14th Annual Conference of the International Speech Communication Associa-
tion, Lyon, France. 148–152

Schuller, B. W. (2013). Intelligent audio analysis (Springer)

146



BIBLIOGRAPHY

Seers, A. (1989). Team-member exchange quality: A new construct for role-making
research. Organizational behavior and human decision processes 43, 118–135

Severt, J. B. and Estrada, A. X. (2015). On the function and structure of group cohesion.
In Team Cohesion: Advances in Psychological Theory, Methods and Practice (Emerald
Group Publishing Limited), vol. 17. 3–24

Shapley, L. S. (1953). A value for n-person games. Contributions to the Theory of Games
2, 307–317

Sharma, G., Ghosh, S., and Dhall, A. (2019). Automatic group level affect and cohesion
prediction in videos. In Proceedings of the 8th International Conference on Affective
Computing and Intelligent Interaction Workshops and Demos (ACIIW) (IEEE), 161–
167

Shrout, P. E. and Fleiss, J. L. (1979). Intraclass correlations: uses in assessing rater
reliability. Psychological bulletin 86, 420–428

Siebold, G. L. (2006). Military group cohesion. Military life: The psychology of serving
in peace and combat 1, 185–201

Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of cronbach’s
alpha. Psychometrika 74, 107–120

Smirnov, N. (1948). Table for estimating the goodness of fit of empirical distributions.
The annals of mathematical statistics 19, 279–281

Smith, M. J., Arthur, C. A., Hardy, J., Callow, N., and Williams, D. (2013). Trans-
formational leadership and task cohesion in sport: The mediating role of intrateam
communication. Psychology of sport and exercise 14, 249–257

Soroush, M. Z., Maghooli, K., Setarehdan, S. K., and Nasrabadi, A. M. (2017). A review
on eeg signals based emotion recognition. International Clinical Neuroscience Journal
4, 118–129

Spink, K. S. (1990). Group cohesion and collective efficacy of volleyball teams. Journal
of Sport and Exercise Psychology 12, 301–311

Spisak, B. R., O’Brien, M. J., Nicholson, N., and van Vugt, M. (2015). Niche construction
and the evolution of leadership. Academy of Management Review 40, 291–306

Stashevsky, S. and Koslowsky, M. (2006). Leadership team cohesiveness and team per-
formance. International Journal of Manpower 27, 63–74

Stein, R. T. and Heller, T. (1979). An empirical analysis of the correlations between
leadership status and participation rates reported in the literature. Journal of Personality
and Social Psychology 37, 1993–2002

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking the
inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 2818–2826

147



BIBLIOGRAPHY

Taggar, S., Hackew, R., and Saha, S. (1999). Leadership emergence in autonomous work
teams: Antecedents and outcomes. Personnel Psychology 52, 899–926

Tahon, M. and Devillers, L. (2010). Acoustic measures characterizing anger across cor-
pora collected in artificial or natural context. In Proceedings of Speech Prosody

Tamarit, L., Goudbeek, M., and Scherer, K. (2008). Spectral slope measurements in
emotionally expressive speech. Proceedings of Speech Analysis and Processing for
Knowledge Discovery , 169–183

Tannen, D. (1994). Gender and discourse (Oxford University Press)

Tao, J. and Tan, T. (2005). Affective computing: A review. In Proceedings of Interna-
tional Conference on Affective computing and intelligent interaction (Springer), 981–
995

Tekleab, A. G., Quigley, N. R., and Tesluk, P. E. (2009). A longitudinal study of team con-
flict, conflict management, cohesion, and team effectiveness. Group & Organization
Management 34, 170–205
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Titre : Analyse Automatique de la Cohésion dans l’Interaction de Petits Groupes
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des Signaux Sociaux

Résumé : Au cours de la dernière décennie, un
nouveau domaine de recherche multidisciplinaire ap-
pelé traitement des signaux sociaux (SSP) a émergé.
Il vise à permettre aux machines de détecter, re-
connaı̂tre et afficher les signaux sociaux humains.
L’analyse automatisée des interactions de groupe est
l’une des tâches les plus complexes abordée par
ce domaine de recherche. Récemment, une atten-
tion particulière s’est portée sur l’étude automatisée
des états émergents. En effet, ceux-ci jouent un rôle
important dans les dynamiques d’un groupe car ils
résultent des interactions entre ses membres.
Dans cette Thèse, nous abordons l’analyse automa-
tique de la cohésion dans les interactions de petits
groupes. La cohésion est un état émergent affec-
tif multidimensionnel qui peut être défini comme un
processus dynamique, reflété par la tendance d’un
groupe à rester ensemble pour poursuivre des ob-
jectifs et/ou des besoins affectifs. Malgré la riche
littérature disponible sur la cohésion du point de vue
des Sciences Sociales, l’analyse automatique de la
cohésion en est encore à ses débuts.
En s’inspirant de connaissances tirées des Sciences
Sociales, cette Thèse vise à développer des modèles

informatiques de cohésion suivant quatre axes de re-
cherche, en s’appuyant sur des techniques d’appren-
tissage automatique et d’apprentissage profond. Ces
modèles doivent en effet tenir compte de la nature
temporelle de la cohésion, de sa multidimensionna-
lité, de la façon de modéliser la cohésion du point
de vue des individus et du groupe, d’intégrer les re-
lations entre ses dimensions et leur évolution dans le
temps, ainsi que de tenir compte des relations entre
la cohésion et d’autres processus de groupe. De plus,
face à un manque de données disponibles publique-
ment, cette Thèse a contribué à la collecte d’une base
de données multimodales spécifiquement conçue
pour étudier la cohésion, et pour contrôler explicite-
ment ses variations dans le temps. Une telle base
de données permet, entre autres, de développer des
modèles informatiques intégrant la cohésion perçue
par les membres du groupe et/ou par des points de
vue externes.
Nos résultats montrent la pertinence de s’inspi-
rer des théories tirées des Sciences Sociales pour
développer de nouveaux modèles computationnels
de cohésion et confirment les avantages d’explorer
chacun des quatre axes de recherche.

Title : Automated Analysis of Cohesion in Small Groups Interactions

Keywords : Cohesion, Deep Learning, Machine Learning, Multimodal analysis, Social Signal Processing

Abstract : Over the last decade, a new multidisci-
plinary research domain named Social Signal Pro-
cessing (SSP) emerged. It is aimed at enabling ma-
chines to sense, recognize, and display human social
signals. One of the challenging tasks addressed by
SSP is the automated group interaction analysis. Re-
cently, a particular emphasis is given to the automated
study of emergent states as they play an important
role in group dynamics. These are social processes
that develop throughout group members’ interactions.
In this Thesis, we address the automated analysis of
cohesion in small groups interactions. Cohesion is a
multidimensional affective emergent state that can be
defined as a dynamic process reflected by the ten-
dency of a group to stick together to pursue goals
and/or affective needs. Despite the rich literature avai-
lable on cohesion from a Social Sciences perspective,
its automated analysis is still in its infancy.
Grounding on Social Sciences’ insights, this Thesis
aims to develop computational models of cohesion fol-
lowing four axes research axes, leveraging Machine

Learning and Deep Learning techniques. Computa-
tional models of cohesion, indeed, should account for
the temporal nature of cohesion, the multidimensio-
nality of this group process, take into account how
to model cohesion from both individuals and group
perspectives, integrate the relationships between its
dimensions and their development over time, and take
heed of the relationships between cohesion and other
group processes. In addition, facing a lack of publicly
available data, this Thesis contributed to the collection
of a multimodal dataset specifically designed for stu-
dying group cohesion and for explicitly controlling its
variations over time. Such a dataset enables, among
other perspectives, further development of computa-
tional models integrating the perceived cohesion from
group members and/or external points of view.
Our results show the relevance of leveraging Social
Sciences’ insights to develop new computational mo-
dels of cohesion and confirm the benefits of exploring
each of the four research axes.
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